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ABSTRACT
Modern cyber attacks are often conducted by distributing digital
documents that contain malware. The approach detailed herein,
which consists of a classifier that uses features derived from dy-
namic analysis of a document viewer as it renders the document
in question, is capable of classifying the disposition of digital doc-
uments with greater than 98% accuracy even when its model is
trained on just small amounts of data. To keep the classification
model itself small and thereby to provide scalability, we employ
an entity resolution strategy that merges syntactically disparate
features that are thought to be semantically equivalent but vary
due to programmatic randomness. Entity resolution enables con-
struction of a comprehensive model of benign functionality using
relatively few training documents, and the model does not improve
significantly with additional training data.
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1 INTRODUCTION
Attackers often embedmalware in digital documents [21], including
those in formats such as Adobe PDF and Microsoft Word. When
an unsuspecting user opens a malicious document, the malware
embedded therein executes and compromises the user’s system.
Since system compromise is undesirable [1, 13], methodologies
and tools for determining the disposition of a document, either
malicious or benign, are needed.

Many approaches for classifying documents have been pursued
[19]. One approach is to check for anomalies in static features
extracted from a document [6, 14, 20]. Another approach, commonly
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employed by anti-virus scanners, is to test documents against byte-
signatures derived from previously seen malicious documents [8].
Yet another approach works by monitoring the run-time behavior
of a document viewer for unexpected actions as it renders the
document [3, 6].

All of the aforementioned approaches for malicious document
detection must be trained on or seeded with characterizations of
previously encountered malicious and/or benign documents. For
instance, traditional antivirus systems rely on curated databases
of byte-signatures to detect malicious documents and machine
learning approaches rely on models that are trained using features
(weighted byte n-grams, dynamic execution artifacts, etc.) extracted
from a corpus containing malicious and/or benign documents.

It is a common failing to assume that the size of one’s corpus
or feature set is of the utmost importance [16], as is evidenced by
the gargantuan malware data sets1 hoarded by cyber-security re-
searchers and analysts, the prevalence of up-to-the-minute malware
feeds hawked2 by commercial vendors, and the many thousands of
results arising from a Google Scholar search for the phrase large
corpus. Though most researchers are aware of the law of diminish-
ing returns and could even quantify the marginal utility of training
on an extra datum if so pressed, it is nonetheless tempting to train
on as much data as possible. Given this temptation, it is perhaps
unsurprising that relatively little work has been done to determine
just how small of a corpus or feature set one can maintain while
still attaining high accuracy.

In this work, we show that a model built using only a small
set of about 1,250 exemplar features is sufficient to classify the
disposition of PDF documents with near perfect accuracy, while
just 350 exemplar features are enough to attain better than 90%
accuracy. Further, the number of benign PDFs that are needed to
learn the classificationmodel is itself very small. As few as 20 benign
PDFs are sufficient to build a model that accurately characterizes
the class of all benign PDFs.

The features we employ correspond to the runtime interactions
that a document viewer makes with its underlying operating system
while it is rendering a document. Such interactions include, e.g.,
opening a file or reading a registry key. For instance, one of our
features might record that the document viewer wrote data to the
file on pathC:\example.txt. Concretely, a feature records information
about the invocation of a Windows system call by the document
viewer.

Our classifier is based on the idea that document viewer / OS
interactions arising from the rendering of some benign documents
can be aggregated into a whitelist. Thereafter, any other document
that induces the document viewer to make non-whitelisted requests
1E.g., see https://www.kaggle.com/c/malware-classification/data
2Team Cymru’s Malware Binary Feed - https://www.team-cymru.com/malware-data.
html
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to the OS can be deemed malicious. However, a naive strategy based
on this whitelisting approach fails outright due to the large degree
of programmatic randomness present in system call arguments. E.g.,
the document viewer might always write logging information to a
temporary file with a runtime generated random file name. Since
the file paths corresponding to these file writes differ syntactically
across runs, no whitelist of finite size (modulo machine limits) will
ever be sufficient to characterize all possible future write requests.

To overcome the issue of programmatic randomness in the fea-
tures, we present a novel approach for distilling a set of features
down to a minimal set of exemplars. The distillation process is a
form of entity resolution; i.e., features that differ syntactically yet
which represent the same semantic interaction between the docu-
ment viewer and the OS are merged together into a single exemplar.
Our entity resolution strategy merges features that only differ due
to instances of programmatic randomness, and is facilitated by way
of a heuristic threshold over Levenshtein [15] edit distance. In par-
ticular, if the string representation of a feature can be transformed
into the string representation of another feature using fewer than
some threshold of edit operations, then the two features ought to
be merged into one.

Once the exemplar whitelist is generated, classification is con-
ducted by again monitoring the document viewer as it renders the
new document in question. The observed system call invocations
are featurized in the same manner as before and compared to the
distilled whitelist. The expectation is that any anomalous features
arising from a malicious document will neither match nor merge
with any of the whitelisted exemplars. If the number of those un-
mergeable features exceeds another threshold, then the document
is declared to be malicious.

What follows in the ensuing sections is a complete description
of the aforementioned approach for document disposition classifi-
cation, and also an empirical evaluation to determine how well it
classifies digital documents of the Adobe PDF format. Our contri-
butions include:

(1) We show that an entity resolution strategy that elides in-
stances of programmatic randomness in awhitelist can greatly
reduce the whitelist’s size while still allowing for high accu-
racy digital document classifications.

(2) We show that such a whitelist can be constructed by moni-
toring the system calls invoked by a document viewer as it
renders just a small number of benign documents.

(3) We describe the aforementioned classification system in de-
tail, present the results of an empirical evaluation thereupon,
and discuss its strengths and limitations.

The rest of this paper is organized as follows: In §2, we describe
our featurization, feature set reduction, and classification strate-
gies in detail. In §3, we describe how the classifier was evaluated
and present the results. Limitations of the proposed approach are
discussed in §4. Related works are discussed in §5 and conclusions
follow in §6.

2 APPROACH
In this section, we describe the features we use for classification
(§2.1), our feature merging strategy based on a process of entity
resolution (§2.2), and our classifier (§2.3).

2.1 Featurization
Our classification approach utilizes features obtained through dy-
namic analysis on a document viewer as it renders a document.
Each recorded feature embeds information about the invocation of
a system call by the document viewer. Invoked system calls serve
as useful features for discriminating between malicious and be-
nign documents [5] since any user-space program, like a document
viewer, must make use of them to interact with the underlying
operating system. We use a custom introspective [7] hypervisor
to record the system calls invoked by the document viewer, how-
ever other approaches based on dynamic instrumentation [9, 17]
or a custom kernel driver could also serve to record system call
invocations.

A new feature is recorded each time the document viewer pro-
cess, or one of its children (e.g., an exploit might start cmd.exe),
invokes one of the system calls shown in the first column of Table
1. Explanations for these system calls are available on Microsoft’s
Dev Center website3. A feature is recorded as a 3-tuple of the form

imaдe,action,object(1)

where imaдe is the file name of the disk image of the process that
made the system call, action is the semantic action associated with
the observed system call (i.e., create, open, read, write, query, or
delete), and object is the name of or the path to the object upon
which the specified semantic action is to be performed. Table 1
also provides the semantic action and a description of the object
associated with each of the supported system calls. Some exam-
ples of recorded features, plus explanations, are shown in Table 2.
While the system calls we handle appear to cover only a small set of
file system, registry, and process related behaviors, most complex
behaviors (e.g., networking) are handled by the kernel as combi-
nations of these simpler behaviors and are therefore captured as
well.

2.2 Entity Resolution
The features obtained using the methodology of §2.1 on a document
viewer as it renders documents evince a great deal of runtime gen-
erated randomness. In particular, the file paths and names encoded
in the features’ object fields often contain substrings of obviously
random characters. For example, the file names embedded in the
object fields of example features #1 and #3 in Table 2 appear to be
of the form {6 random hexadecimal characters}.log. Though those
two features appear to be semantically equivalent in the sense that
they both reflect the writing to a log file by the document viewer,
they differ syntactically.

This prevalence of runtime generated randomness precludes the
creation of a comprehensive whitelist of such features that charac-
terizes the class of benign documents. Rather, an entity resolution
procedure is needed that elides instances of programmatic ran-
domness in the collected features, and thereby provides a means to
recognize that two such features are semantically equivalent even if
they are syntactically disparate. To that end, we employ a heuristic
entity resolution technique based on Levenshtein edit distance to
merge semantically equivalent yet syntactically disparate features

3https://msdn.microsoft.com/en-us/library/windows/hardware/ff567122(v=vs.85)
.aspx
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System Call Action Object
ZwCreateFile Create Path to file to be created.
ZwOpenFile Open Path to file to be opened.
ZwReadFile Read Path to file to be read.
ZwWriteFile Write Path to file to be written.
ZwCreateKey Create Path to registry key to be created.
ZwOpenKey Open Path to registry key to be opened.
ZwQueryKey Query Path to registry key to be queried.
ZwDeleteKey Delete Path to registry key to be deleted.
ZwSetValueKey Write Path to registry key value to be set.

ZwDeleteValueKey Delete Path to registry key value to be deleted.
ZwEnumerateValueKey Query Path to registry key to be enumerated.

ZwCreateProcess Create Disk image name of the created process.
Table 1: System calls monitored by our dynamic analysis, with their corresponding semantic actions and objects.

# Recorded Feature Explanation
1 reader.exe,write,

C:\temp\2f358b.log
Denotes that reader.exe pro-
cess attempted to write a file
on the specified path.

2 reader.exe,read,
C:\docs\file.pdf

Denotes that reader.exe pro-
cess attempted to read a file
on the specified path.

3 reader.exe,write,
C:\temp\a632cf.log

Denotes that reader.exe pro-
cess attempted to write a file
on the specified path.

4 reader.exe,create,firefox.exe Denotes that reader.exe pro-
cess spawned a child from
the firefox.exe disk image.

Table 2: Example features recorded by our analysis, with ex-
planations.

into a single exemplar feature. The set of such exemplar features
extracted from a sufficiently representative corpus of benign docu-
ments is then interpreted as comprising a comprehensive exemplar
whitelist characterizing the class of benign documents.

We define any two features, a and b, to be α-equivalent if

Lev(a,b)
n

< α(2)

where Lev(a,b) denotes the Levenshtein edit distance between
features a and b, and n is the string length of the longer feature.
Then, letting C be a set of features obtained from the dynamic
analysis on the rendering of a corpus of benign documents, we say
that Wα is an exemplar whitelist for C if and only if

∀c ∈ C,∃w ∈ Wα : c is α-equivalent tow(3)

As an example, assume that the features shown in Table 2 arose
from the dynamic analysis of a benign PDF. Also assume α = 0.2.
The edit distance between the first and second example features is
16 and the length of the longer of the two is 35, and 16

35 ≮ 0.2, thus
those two features are not α-equivalent and should not be merged.
Conversely, the edit distance between the first and third example
features is 5 and they both have the same length of 35, and 5

35 < 0.2,

thus those two features are α-equivalent and should be merged. It
turns out the first and the third features are the only pair among
the example features that are α-equivalent. As such, the whitelist
corresponding to this initial set of example features contains the
second feature, the fourth feature, and either the first or the third
feature (the other having been merged).

Naively, one can find a subset of C that meets this definition
by starting with an empty whitelist, Wα , and iterating over every
feature, c ∈ C. At each step, check c for α-equivalence with ev-
erything in Wα and add c toWα only if ∄w ∈ Wα such that c is
α-equivalent to w . However, this naive strategy tends to be slow
since each successive feature is compared to progressively more fea-
tures asWα grows, leading to an asymptotic worst case bound of
O(| C |2L)where L is the worst-case cost of calculating Levenshtein
edit distance (i.e., the length of the longest c ∈ C squared).

Since the naive approach for constructing an exemplar whitelist
doesn’t scale, a more efficient strategy is required. Empirically, fea-
tures that are semantically equivalent tend to be lexicographically
close to one another. I.e., they tend to have long coinciding prefixes.
We used this observation to inform a revised strategy that provides
for a significant reduction in the number of required comparisons
when constructing Wα . The revised strategy is nearly equivalent
to the aforementioned, except rather than comparing each suc-
cessive c ∈ C to the entirety of the current whitelist, instead c is
tested for α-equivalence against just the two features inWα that
immediately precede or succeed it lexicographically. When Wα is
stored in lexicographical order, this revised strategy has worst case
complexity of just O(|C |L).

To show that the revised strategy for exemplar whitelist genera-
tion still provides for strong entity resolution as compared to the
exhaustive approach, we constructed 2,000 exemplar whitelists, for
α = 0.05 and α = 0.35 (cf. §3.3), from 2,000 pairs of Adobe PDF
documents. While doing so, we recorded the amount of feature
merging that occurred in terms of the number of features that 1)
merged with just their lexicographic neighbor(s), 2) merged with
just one or more non-neighbors, 3) merged with both a neighbor
and a non-neighbor, or 4) didn’t merge with any other features. The
results, showing the averaged amount of merging across the 2,000
experiments, are shown in Table 3.
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% of features merging with α = .05 α = .35
No other feature 0.06 0.06
Only neighboring feature(s) 0.05 0.04
Only non-neighboring feature(s) 0.14 0.12
Neighboring and non-neighboring feature(s) 99.7 99.8

Table 3: Experimental results showing the amount of fea-
ture merging with both lexicographic neighbors and non-
neighbors.

# Recorded Feature
A reader.exe,write,C:\temp\9467f2.log
B reader.exe,write,C:\downloads\payload.exe
C reader.exe,create,payload.exe

Table 4: Example dynamic features arising from the render-
ing of a document of unknown disposition.

The results show that on average just 0.06% of features merge
with one or more non-neighbors but not with either neighbor. This
indicates that testing just lexicographically neighboring features for
α-equivalence provides a strong approximation to the exhaustive
method.

2.3 Classification
Benign versus malicious classification is implemented with a heuris-
tic rule based classifier. A document is classified as malicious when
the number, k , of non-mergeable features observed as the docu-
ment viewer renders the document exceeds a threshold, β . Given
a feature merging threshold, α , this k for a suspect document is
determined as follows.

Let Wα be the exemplar whitelist generated via the method
of §2.2 on a corpus of benign documents for some particular pre-
chosen α , and let S be the set of features collected from rendering
the suspect document under the dynamic analysis. For any feature
s ∈ S , letps andns respectively represent the two exemplar features
that lexicographically precede and succeed s in Wα . Further, let
F : S → {0, 1} be defined

F (s) =
{
0 if s is α-equivalent to ps or ns , or
1 otherwise

(4)

Then
k = | { s ∈ S \Wα | F (s) , 0 } |(5)

The document in question is declared malicious if and only if
k > β .

Continuing with the example from the preceding section and
letting β = 1, we now assume that a new document of unknown
disposition is to be classified. Further, assume that the features
arising from the dynamic analysis of the viewer as it renders that
document are those shown in Table 4. Of these new features, feature
Amerges with a feature already in the whitelist (either #1 or #3 from
Table 2). However, neither of the other two new features merge
with or match any features in the exemplar whitelist, thus k = 2
and k > β , hence the new document is classified malicious.

3 EVALUATION
In this section, we present the results of an evaluation we conducted
to determine the efficacy of our approach for document disposition
classification as detailed in §2. The evaluation places particular on
emphasis on answering three questions:
§3.1 To what extent does feature merging via entity resolution

reduce the size of the retained feature set?
§3.2 How many benign document renderings must be observed

in order to collect a comprehensive set of merged exemplar
features?

§3.3 What level of classification accuracy is attainable using the
whitelist comprised of those merged exemplar features?

To evaluate the approach, we sought to classify the disposition
of PDF documents by monitoring their renderings under the Adobe
Reader v9.04 document viewer. This particular version of Adobe
Reader was selected for use since it is known to be susceptible to
several publicly disclosed exploits.

We used an open-source data set of both benign and malicious
PDF documents available5 from Contagio to conduct the evaluation.
From the Contagio set, we used 311 of the benign PDFs for training,
and another 33 benign PDFs plus 33 malicious PDFs for testing.
The training set size was chosen arbitrarily and our results show
that it was more than sufficient; i.e., training on additional benign
documentswould not have significantly impacted the learnedmodel
(cf. Figure 2). The size of the malicious test set was determined by
the number of malicious documents inside of the Contagio dataset
that are known to target Adobe Reader v9.0. These malicious PDFs
include 5 examples of a CVE-2010-2883 exploit, 15 examples of
CVE-2010-0188 exploit, and 13 examples of CVE-2011-2462 exploit.

3.1 Feature Set Reduction
As the feature merging threshold α increases, so too does the per-
centage of features that get merged together. Figure 1 shows the
percentage of original features derived from the benign training set
that are retained after feature merging for various α . It is interesting
to note that at even relatively low α of, say, 0.05, a reduction of
more than half is observed. In other words, over half of the features
obtained by monitoring Adobe Reader v9.0 while it renders benign
documents only vary due to small amounts of programmatic ran-
domness. Further, as will be seen in §3.3, accuracy as high as 90%
can even be attained using α up to 0.35, which provides a feature
set size reduction of 85%.

3.2 A Comprehensive Whitelist of Exemplar
Features

Figure 2 illustrates the growth of the whitelist with and without
feature merging as the number of rendered documents is varied.
With no feature merging (i.e., α = 0), the size of the whitelist
monotonically increases with growth proportional to the number
of documents rendered. In contrast, feature merging appears to
provide an upper bound on the size of the whitelist irrespective of
the number of documents rendered. For instance, with α = 0.05 (cf.
4ftp://ftp.adobe.com/pub/adobe/reader/win/9.x/9.0/enu/AdbeRdr90_en_US.exe - In-
staller MD5 Sum: f41aa5dec8c9137b2ff4174ec47d8129
5http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.
html

ftp://ftp.adobe.com/pub/adobe/reader/win/9.x/9.0/enu/AdbeRdr90_en_US.exe
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Figure 1: Effect of varying α in terms of the percentage of
original features retained after feature merging via entity
resolution.
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Figure 2: Growth rate of feature whitelist with and without
entity resolution based feature merging; α = 0.05.

§3.3), the size of the whitelist tops out at 1,247 exemplar features,
and with α = 0.35 (ibid.), it tops out at 345 exemplar features.

The quickness with which the upper bound on the whitelist’s
size is reached is also interesting. At α = 0.05, rendering just 60
randomly selected documents from the training set is sufficient
to obtain 95% of the whitelist that is obtained by analyzing the
entire training set of 311 documents, and at α = 0.35, just 20 benign
documents are necessary to obtain 95% of the whitelist constructed

Figure 3: Classification accuracy attained as α and β are var-
ied.

using the entire training corpus. This shows that the vast major-
ity of viewer / OS interactions differ only slightly due to runtime
variations, and thus a small corpus of nomore than 100 benign docu-
ments is more than sufficient to build up a comprehensive whitelist
of exemplar features. We leave the question of whether the Con-
tagio data set of benign PDFs is representative of the universe of
benign PDFs to future work.

3.3 Classifier Accuracy
A contour map that shows how classification accuracy varies with
α and β is presented in Figure 3. Classification accuracy is defined

TP +TN

P + N
(6)

where TP and TN are respectively the count of true positive and
of true negative classifications, and P and N are respectively the
count of malicious and of benign documents in the testing set.

The contour map shows that nearly perfect classification ac-
curacy (> 98% with precision 1.0 and recall 0.97) is attained with
α = 0.05 and β = 5, and that good accuracy (> 90% with precision
1.0 and recall 0.85) is attained with α = 0.35 and β = 25 (and at
many other points as well). This means that an analyst can perform
nearly perfect classifications using a whitelist containing just 1,247
exemplar features (cf. §3.2), and with minimal trade-off can even
use a significantly smaller whitelist containing just 347 exemplar
features.

3.4 Discussion
The results of the evaluation we conducted indicate that a classifier
using features derived from the system calls that a document viewer
makes as it renders documents can attain near perfect accuracy.
Since related works in digital document classification have also
attained similarly high classification accuracy (cf. §5), this result
is pleasing but far from revolutionary. However, the present work
nonetheless stands out because we have shown that the benign
class of PDF documents can be characterized by a very small set
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of viewer / OS interactions that are induced by those documents’
collective rendering. Further, these interactions can be learned by
monitoring the rendering of just a few documents; i.e., small data is
sufficient. These findings lend to both the credence and feasibility
of NIST’s recommendation (cf. NIST Special Publication 800-53
[12]) that both federal and private organizations should employ
so-called detonation chamber based security controls, since they
are shown herein to be efficacious and to require only minimal data
processing facilities.

4 LIMITATIONS
Since our approach is based on the dynamic analysis of document
viewers as they render digital documents, it faces a variation on the
same code coverage issues faced by most dynamic analysis strate-
gies. That is, the dynamic analysis component can only observe
the interactions between the user space document viewer and the
operating system that actually occur at runtime. If a malicious doc-
ument is structured in such a way that its payload only executes as
a result of some human interaction with the document viewer, such
as the clicking of a button, then our approach will fail to observe
the interactions that arise from execution of that payload unless its
triggering mechanism is actually actuated at runtime. In order to
overcome this limitation, one would either need to employ the use
of software automation technologies like AutoIt6 to automate the
clicking of links and buttons throughout the viewer’s interface or
rely on a human-in-the-loop to manually actuate interface artifacts
like links and buttons. Similarly, if an exploit payload is configured
to desist if it detects that it is being executed within a sandboxed or
dynamic analyusis environment, then our approach would also fail
to observe the malicious actions that the exploit would otherwise
perform.

In our evaluation, we tested against Adobe Reader v9.0 and
therefore our malicious test set only included PDF documents that
we confirmed to work against Adobe Reader v9.0. However, due to
the brittle nature of exploits, our evaluation systemwould likely fail
to detect malicious PDFs targeting other version of Adobe Reader.
If our approach were to be adopted to detect malicious PDFs en
masse, then separate models of expected functionality would need
to be generated for each version of the document viewer.

Conversely, though we only tested against three different PDF
exploit CVEs (cf. §3) due to a lack of publicly available data, we are
confident that our model for classifying the disposition of PDFs
with respect to Adobe Reader 9.0 would generalize to other CVEs
that target Adobe Reader 9.0 as well. The argument for this is
logical: Since we believe our model comprehensively characterizes
all the actions Adobe Reader 9.0 might undertake while rendering
a benign document and since a PDF exploit CVE would only exist
if it induced the application into performing unexpected actions,
then our classifier would also treat as anomalous the unexpected
actions arising from exploitation by any other PDF exploit CVE
targeting Adobe Reader 9.0.

Another potential limitation of our approach is that an attacker
with knowledge of the detector’s threshold configuration (i.e., α
and β) could craft their malicious document in such a way that it

6https://www.autoitscript.com/

performs fewer than β anomalous actions. In so doing, the docu-
ment would be able to evade detection. While such an attack against
our detector is theoretically possible, it seems largely untenable in
practice since good values for β tend to be very small (cf. Figure 3).
In other words, an attacker would need to achieve their malicious
aims while performing no more than a small handful of operations
that invoke system calls. Since even a relatively simple action like
listing a directory can result in many hundreds of system call invo-
cations, we therefore believe that only the most trivial of attacks,
such as the deletion of a single file, could pass undetected.

5 RELATEDWORKS
The distribution of malicious documents has seen a steady rise as
Advanced Persistent Threat (APT) and phishing campaigns have
become the preferred avenue of attack for cyber-adversaries. As
such, there is already a great deal of prior work in the area of
malicious document detection.

We differentiate our work from that of our predecessors along
two orthogonal dimensions. First, our approach detects malicious
documents by actually monitoring the document viewer process
for malicious activity. This is in contrast to the majority of prior
work, which has generally sought to statically detect anomalies
in the document. Such static detection can be evaded by attackers
via the application of obfuscations to their malicious documents.
In contrast, our method will observe every malicious interaction
that a malicious document induces a document viewer to take,
irrespective of any applied obfuscations. Second, of the few prior
works similar to our own [3, 6] that also monitor the dynamic
runtime of the document viewer, none have sufficiently addressed
the sheer glut of dynamic features. We have shown that it is not
necessary to maintain a gigantic whitelist of system call based
features to characterize the set of benign documents.

We now present a brief survey of related works so as to trian-
gulate the present work with respect to that which preceded it. A
more comprehensive survey of works related to the classification
of digital documents is available in Nissim, et al. [19].

The most similar prior work to our own is Engleberth, et al. [6].
They too monitored dynamic behaviors of document viewers to
construct a white list, and they even went so far as to generalize
their features in a manner that appears similar to our entity reso-
lution. However, the only record of their work exists in the form
of a short slide-deck presentation, with no accompanying paper
publication, and thus details are scant as to how their strategy for
feature generalization actually functioned. Conversely, herein we
have fully defined a principled approach for dynamic feature space
reduction via entity resolution. Bazzi and Onozato [3] also em-
ployed the use of dynamic document viewer features for malicious
document detection, but they employed no feature space reduction
technique.

Other approaches for malicious document detection have used
static features instead of the dynamic features we use. The prior
work using static features for classification can itself be broken
down into two groups: those that classify based on a document’s
metadata and/or structure, and those that classify based on the
discerned functionality of code embedded within the document.

https://www.autoitscript.com/
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Classification approaches that turn on metadata and structural
features [18, 20, 22, 23] have often been successful at binary clas-
sification of malicious documents. However, such approaches can
be evaded if the attacker applies obfuscations. The other style of
static analysis seen in prior work, which turns on the code em-
bedded in documents, are feasible because the PDF specification
allows for Javascript code to be embedded within a PDF document.
It has been noted [24] that many attacks delivered via malicious
PDF documents are conducted by embedding malicious Javascript
within said documents. As such, approaches [14, 24] which extract,
tokenize, and featurize embedded Javascript have also shown some
success. However, these approaches can also be evaded when the
attacker obfuscates the JavaScript. Further, the presence of obfus-
cated Javascript is not in itself a sufficient discriminator by which
a document can be declared malicious, since JavaScript in benign
PDF documents is also often obfuscated for intellectual property
protection purposes.

Aside from this work’s focus on malicious document detection,
approaches for feature set reduction have been proposed in the
broader malware detection literature. For instance, after observing
that a glut of string-typed features obtained by their analysis was
causing poor efficiency in their malware familial classifier, Islam,
et al. [10] reduced their retained feature set by throwing away
those features that were not strongly discriminative with respect
to any particular malware family. Their approach effectively sets
a lower-bound threshold on the common term frequency cross
inverse document frequency (TFxIDF) weighting scheme such that
any features with sufficiently low weight are discarded. Such a
feature reduction strategy differs from our own in that it discards
features which are not ideal discriminators, whereas our approach
instead uses entity resolution to merge syntactically different yet
semantically equivalent features.

Another approach for feature set reduction, BitShred [11], col-
lapses the feature space by hashing the individual features. The cost
of such an approach is the introduction of hash collisions, whence
otherwise disparate features become indistinguishable from one
another. This strategy, like our own, can cause two syntactically
different features to be merged together, however the criteria by
which their features are merged cannot be considered as a form
of entity resolution. Rather, whether two features merge under
BitShred, i.e., whether they hash to the same value, is merely a
random artifact of the employed hash function. In contrast, our
approach attains similar reductions in feature set size, but does so
with the added benefit that only features thought to be semantically
equivalent are merged.

Bailey, et al. [2] studied a dataset in which dynamic analysis
features were present for the purposes of familial classification and
applied Normalized Compression Distance (NCD)[4] to mitigate the
effects of randomness when comparing groups of dynamic features
between malware samples. While this technique is similar in effect
to the use of entity resolution in that it minimizes the effect of pro-
grammatic randomness, it is distinguished from the present work
in that they utilized an unsupervised clustering approach using
NCD to pairwise compute the similarity of two files. In contrast, our
approach is a supervised technique that applies entity resolution
to every feature in the training corpus and merges features where

appropriate to create a minimal whitelist that characterizes the
benign class.

6 CONCLUSION
We developed a classifier for the disposition of digital documents
that requires training on only a very small data set of benign docu-
ments and which only retains a very small set of exemplar features.
This small-data classifier attains similar accuracy to the big-data
approaches previously detailed in the literature. In particular, our
approach has been shown to attain 98% accuracy in classifying PDFs
as either malicious or benign. Further, our classification approach
entails so few comparisons that it can easily be performed in an
online fashion. As such, the proposed strategy is suitable for use
in conjunction with any sandboxing or detonation chamber based
technologies that provide for the tracing of system calls.
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