In Situ Reuse of Logically Extracted Functional
Components

Craig Miles, Arun Lakhotia, and Andrew Walenstein
Center for Advanced Computer Studies,
Unwversity of Louisiana at Lafayette,
Lafayette, LA, U.S.A.

About Authors

Craig Miles is a Doctoral Fellow and Ph.D. candidate at the Center for
Advanced Computer Studies, University of Louisiana at Lafayette.

Contact Details: c/o Center for Advanced Computer Studies, 301 East
Lewis Street, Lafayette, LA, 70504, U.S.A., phone 1-337-482-6338, fax
1-337-482-5791, email craig@craigmil.es

Arun Lakhotia is a Professor of Computer Science at the Center for
Advanced Computer Studies, University of Louisiana at Lafayette.

Contact Details: c¢/o Center for Advanced Computer Studies, 301 East
Lewis Street, Lafayette, LA, 70504, U.S.A., phone 1-337-482-6338, fax
1-837-482-5791, email arun@louisiana.edu

Andrew Walenstein is an Assistant Professor in the School of Informatics
and Computer Science, University of Louisiana at Lafayette.

Contact Details: ¢/o School of Informatics and Computer Science, 301
Fast Lewis Street, Lafayette, LA, 70504, U.S.A., phone 1-(357)-482-6768,
fax 1-(337)-482-5791, email walenste@ieee.oryg

Keywords

Computer Security, Functional Component Extraction, Software Reuse,
Binary Analysis, Binary Instrumentation

Abstract

Programmers often identify functionality within a compiled program that
they wish they could reuse in a manner other than that intended by the pro-
gram’s original authors. The traditional approach to reusing pre-existing
functionality contained within a binary executable is that of physical extrac-
tion; that s, the recreation of the desired functionality in some executable
module separate from the program in which it was originally found. Towards
overcoming the inherent limitations of physical extraction, we propose in situ
reuse of logically extracted functional components. Logical extraction consists
of identifying and retaining information about the locations of the elements
comprising the functional component within its original program, and in situ
reuse is the process of driving the original program to execute the logically ex-
tracted functional component in whatever manner the new programmer sees

fit.

1 Introduction

There exists many possible situations where a programmer may need to reuse
capabilities embedded within a binary executable for which the source code
is not available. Such a need arises when porting applications from older
architectures and operating systems to newer environments. There are also
times when a compiled component may contain certain capabilities that are
desired to be used in another context, outside of the original system. Similar
needs arise when performing security audits of third party applications to
determine the existence of undesired behaviors or during forensic analysis
of a potentially hostile program to exercise its capabilities under a different
control environment.

When the need arises to implement a new system that will include one or
more functionalities that have equivalent semantics to those in a previously
existing binary executable for which the source code is not available, those
functionalities are generally redeveloped ex novo. However, such ex novo
redevelopment is unnecessary and inefficient because code that performs the
desired functionality already exists within the original binary executable. In
lieu of ex novo redevelopment, we propose a system for reusing pre-existing
functionalities without separating them from the binary executables in which
they were originally found.

The term functional component has been defined as a collection of pro-

grammatic constructs (instructions, data structures, etc.) that accomplish
a particular function [Agell]. Extraction of such functional components is
generally thought of in the “physical” sense; that is, to extract a functional
component from a compiled program, the code and data that comprise that
functional component are identified and separated from the original program
into a stand-alone executable module. However, the physical model is not the
only paradigm available for the extraction and subsequent reuse of functional
components. Rather than physically extracting a functional component from
its original disk image or process space, a functional component may be ex-
tracted “logically”. Logical extraction is the process of making a functional
component available for reuse in situ; that is, within its original context.
Such a logical extraction is achieved not by separating the functional com-
ponent from the program in which it resides, but rather by identifying and
retaining the locations of all of the elements within the original program that
comprise the functional component. We refer to that retained information
as the “descriptor” of the logically extracted functional component (LEFC).
Reuse consists of programming to the exported interface described by the
descriptor. Given a descriptor containing the relevant information about
a functional component within a compiled program, that program may be
loaded into memory and driven in some manner so as to execute the desired
functional component.

We propose a taxonomy of LEFCs: cold, hot, warm, and truly hot. The
category to which a LEFC is classified indicates the manner in which it may
be reused by a programmer or reverse engineer. In order to reuse a hot LEFC
in situ, the program in which the functional component resides must first be
put into a particular state prior to running the LEFC. Cold LEFCs, on the
other hand, are those that may be run regardless of the program’s state.
Warm LEFCs are a special subset of hot LEFCs which may be converted
into cold LEFCs, and truly hot LEFCs are hot LEFCs which are not warm.

To demonstrate the usage of LEFCs, we have designed and implemented
a proof-of-concept software system capable of facilitating their in situ reuse.
The system provides the ability to reuse both hot and cold LEFCs in situ.
The software system, called LEFC Reuser, reads in descriptors of LEFCs
and provides a programmatic interface whereby they may be executed. The
user provides argument values to be passed to the LEFC when appropriate,
and LEFC Reuser facilitates the return of computed information back to the
caller after the LEFC has finished executing.

The goal we envision for logical extraction and in situ reuse of functional
components is the ability to treat any compiled executable as a library of
exportable functional components in the same manner that Windows DLLs
are libraries of exported functions. A programmer should be able to quickly
and easily identify and extract the interesting functional components from
a compiled program such that they then may be called by his or her own
program. The present work is the first step in that direction.

Through this work, we make both theoretic and empiric contributions
relating to logically extracted functional components and their in situ reuse.
The primary contributions of this work follow:

e We propose in situ reuse of logically extracted functional components.

e We formally define logical extraction of functional components.

e We formally define categories into which logically extracted functional
components may be classified, and we discuss how the process for
reusing logically extracted functional components differs depending on
their categories.

e We further the state of the art by developing and describing the imple-
mentation of a software system, called LEFC Reuser, that allows for in
situ reuse of logically extracted functional components.

2 Motivation

In this section, we describe a real scenario experienced by the authors in
which we found ourselves wanting to use functionality of a program in a
manner unavailable to us through the program’s Ul. We first detail the steps
we followed to “physically extract” the functionality, and later we show how
we may more easily and efficiently achieve our reuse objective by logically
extracting the functionality and reusing it in situ.

The authors were recently asked to help reverse engineer a Windows PE.
The executable was provided as a reverse engineering challenge at a Capture
the Flag type contest. In order to proceed in the competition, contestants
were required to recover and submit a password embedded within the pro-
gram. The user interface of the application consists of a single form with a
Get My Fortune! button and a text field. Upon clicking the button a ran-
dom fortune cookie message is displayed in the text field, and a delay is set
such that the button may not be clicked again for a few seconds. New for-

4

tune cookie messages continue to be displayed, even after clicking the button
many times.

The organizers of the competition indicated that one of the randomly
displayed fortune cookie messages would contain the password. With luck, a
contestant could repeatedly click the button and possibly have the password
displayed to him. However, with the appearance of so many unique fortune
cookie messages, it seemed evident that such an approach would take much
longer than would be desirable. A better approach is to obtain all of the
fortune cookie messages at once.

Through much reverse engineering, it was determined that all of the pos-
sible fortune cookie message are embedded in the PE in an encrypted form.
Each time the button is pressed, one of the encrypted messages is decrypted
by the Windows API function CryptDecrypt() and displayed to the user.
Figure 1 shows the display of the Windows debugger OllyDbg! with the
execution of the Fortune Cookie program stopped one instruction past the
call to CryptDecrypt(). The arguments to the CryptDecrypt() system call
have been added as comments. We see that the CryptDecrypt() function
takes both encrypted data pointed to by the register EDI and a descriptive
hKey structure which contains information about the encryption algorithm
employed and the decryption key to be used. Finally, we see that the pre-
viously encrypted data pointed to by EDI has been decrypted in place, as
the location now contains the decrypted fortune cookie message that will be
displayed to the user.

In order to read all of the embedded fortune cookie messages at once,
we first extracted the entire block of encrypted fortune messages from the
binary executable to a file. With the block of encrypted strings in hand,
we were left to re-implement the decryption algorithm. By consultation of
the MSDN, we found that the construction of the hKey structure occurs by
calling several Windows cryptographic functions sequentially. CryptAcquire-
Context() creates our cryptographic environment, and CrypteCreateHash()
inserts a hash object into that environment. Once the object is created,
a plain-text decryption key is hashed by CryptHashData() and is inserted
into the hash object. Finally, the actual hKey decryption key structure is
generated from the hash object by CryptDeriveKey(). With the knowledge
of how to generate the proper hKey decryption key structure and how to

Thttp://www.ollydbg.de/

aE4a1s02]| PUSH EDR pwdlatalen

FUSH EDI pbbata

PLUSH & dwF Lags

FUSH 1 Final

FUSH & hHash

FUSH ERX hkeyw from Coupt Deriwvekew
Mol OWorRD PTE S5:[ESF+241,ECH Sets value for pwdDatalen

CALL OWORD PTR DO5:[C<&A0OVAFIZZ.CruptOecrypt>] | AOUAPIZZ.CruptOscrupt
TEST ERX,ERX

Registers [(FFUI 4 i < < 4 i
ER: BEEREEE]

ECk 7FDEALES ADUAFIZZ. YFOEALIES

EQ: B880E6E6ES

EEX @81ZFESC

ESF BB1ZF&ES

EEBF @81ZF&EE

ESI B812FESC

EDI BE3FF2FE2 RASCII 2C,"Your lowve life will be happy and harmonious.™

Re-Implemented in C++
CryptDecrypt(crypt_key, HULL, TRUE, MULL, EncryptedData+ptr, &data_len);

Figure 1: Display of OllyDbg showing the Fortune Cookie program paused
after the call to CryptDecrypt(), and “physically extracted” C++ source
code of the same call in our physically extracted decryption program.

call CryptDecrypt(), we re-implemented the decryption routine and made it
decrypt each of encrypted fortune cookie messages we had extracted. The
Fortune Cookie program and the physically extracted C++ source code of
our decryption program is available online?. Amongst the decrypted mes-
sages was found the password for the challenge: “YoU gOt It!! This 1s d4
K3Y :p”.

The tedious process of reconstructing the Fortune Cookie program’s de-
cryption code that we have just detailed is an example of physical extraction.
Some functionality was located within a program that we wished to leverage
in a way unintended by the original authors; thus the semantics of the func-
tionality were understood and reimplemented externally. Though in this case
the functionality was reimplemented in C++, it also could have been physi-
cally extracted by separating the actual X86 assembly code that performed
the functionality we desired (the set up for and calls to the five Windows en-
cryption functions) from the executable, and organizing it into a standalone
executable module.

The question now becomes, why must we care how the decryption key
structure is set up? Why must we create a new program with the ability
to decrypt the encrypted messages when all of that functionality is already

Zhttp://www.cacs.louisiana.edu/~csm9684 /Fortune_Cookie_Program_and_Decrypter.zip

present within the Fortune Cookie program itself? These questions form the
crux of our argument for logical extraction and in situ reuse of functional
components. Such logical extraction allows for a functional component to be
reused without extracting it from its original context. If we could logically
extract the functional component that does just the actual decryption, then
we could start up the Fortune Cookie program, let it construct its hKey
decryption key structure as it normally would, and finally take control of its
execution and cause it to run the decryption functional component on each
of encrypted messages.

3 Logically Extracted Functional Components

A functional component is a collection of programmatic constructs (instruc-
tions, data structures, etc.) that accomplish a particular function [Agell].
Such a functional component may be logically extracted from a binary exe-
cutable (the target program) by identifying and retaining information about
it, thereby creating a logically extracted functional component (LEFC). The
information that must be retained includes the address of the functional com-
ponent’s entry point within its target program, and the address(es) of the
exit point(s). Also necessary are the parameters of the functional component,
the locations where the functional component’s return values are stored, and
possibly the state that the target program must be in prior to running the
LEFC.

From this definition, it is evident that a functional component is not the
same thing as a C-like function. The first instruction of a functional compo-
nent need not correspond to the entry point of a compiled C-like function. For
example, the entry point of a functional component might be in the middle of
some loop body. Furthermore, a functional component does not necessarily
end on a ret instruction, but rather it ends on any instruction that has been
specified by the definer of the functional component to be an exit instruction.
In our view, a functional component is a collection of instructions, with one
specified as the entry point, through which control flows until an instruction
specified as an exit point is executed and/or an exit condition is met.

In terms of how they may be reused, particularly differentiating amongst
LEFCs is whether or not their target program must first be put into some
state prior to being able to run the LEFC. Referring back to Section 2,
the functional component that does the actual decryption of the encrypted

fortune cookie messages (and nothing more) is dependent on the prior con-
struction of the hKey decryption key structure. Prior initialization of the
hKey structure constitutes the state of the target program on which the de-
cryption functional component depends. A LEFC may be classified into two
broad categories depending on whether or not its target program must first
be put into some state before the LEFC may be executed.

A LEFC that does not depend on its target program first setting up some
state is a cold LEFC. An example of a cold LEFC is a procedure that takes
two integer arguments and returns their sum. Such a LEFC is cold because
no state need be set up prior to running the functional component in order for
it to perform the desired action; it must simply be provided the two integers
to be summed.

A hot LEFC is a LEFC that depends on its target program being put
into some state before the LEFC may be run; in other words, the LEFC
may depend on data initialized by code of the target program that is not
part of the LEFC. For example, consider again the decryption functional
component of the Fortune Cookie program. The functional component has
a data dependency on the prior initialization of the hKey decryption key
structure. In order to make use of the decryption LEFC, the Fortune Cookie
program in which it resides must first be driven to some state where it is
known that the key structure initialization has already taken place.

We may further partition the universe of hot LEFCs into those that are
warm and those that are truly hot.

A warm LEFC is one that depends on its target program being put into
some state which must always be exactly the same in order for every execu-
tion of the LEFC to exhibit the desired behavior. Once more, consider the
fortune cookie decryption LEFC. If it can be shown that the initialized hKey
decryption key structure on which it depends is always initialized in the same
way (every initialization of it results in an hKey data structure comprised
of the exact same bytes as the previous initialization), then the decryption
LEFC is a warm one.

Hot LEFCs that are not warm are said to be truly hot. A truly hot LEFC
depends on its target program being put into a state that is not always the
same. For example, consider a LEFC that sends an encrypted message to a
recipient. Assume that the transmission of the encrypted message must be

preceded by a cryptographic handshake between the sender and the recipient,
thus the LEFC that sends the encrypted message depends on a state of the
target process in which the cryptographic handshake has already taken place.
A LEFC of this nature is truly hot because the result of the cryptographic
handshake, which is the primary component of the state on which the LEFC
depends, differs each time the handshake takes place.

Warm LEFCs are differentiated from truly hot LEFCs because they can
be converted into cold LEFCs. To do so, the initialized data comprising the
state on which the warm LEFC depends can be identified and retained in
the descriptor of the LEFC. Prior to running the LEFC, that state can be
artificially constructed within the target program’s process space, rather than
relying on the target program’s code to set it up. In this manner, the warm
LEFC would have been converted into a cold LEFC, as it no longer relies on
the target program’s code to construct the state on which it depends.

The question may arise as to why the code that sets up the state on
which an LEFC depends would not also just be included within the LEFC.
Because LEFCs are defined as starting from a singular entry point from which
execution flows until an exit point or condition is reached, no ability to jump
from one arbitrary chunk of code to another is present. As such, if execution
does not flow from the code that sets up the state to the code that comprises
the rest of the functional component, then there is no way to combine those
two segments of code into a single LEFC. In order to meaningfully include
two segments of code within a single LEFC, control must flow from the first
to the second of its own accord. Referring once again to the Fortune Cookie
program to provide an example, through our analyses we determined that
the code which initializes the hKey decryption key structure is executed only
once when the Fortune Cookie program is initially loading, whereas the code
the performs the actual decryption of encrypted message executes each time
the Get My Fortune! button is pressed. As control does not flow from the
hKey initialization code to the message decryption code, the two sections of
code cannot be extracted as a single LEFC. They could, of course, both be
extracted into two individual LEFCs.

4 In Situ Reuse

In situ is a Latin phrase that, when literally translated, means “in place”.
In archeology, in situ refers to an artifact that has not been moved from its

original place of deposition. We employ the phrase in a manner similar to
how it is used by archaeologists. In particular, we use in situ to qualify the
manner in which we programmatically reuse LEFCs; in our work, we exe-
cute (reuse) LEFCs without separating them from their original places. In
contrast and as was described earlier, a functional component may instead
be physically extracted from it’s original program into some stand-alone ex-
ecutable module. We call execution of such a physically extracted functional
component to be a case of ex situ reuse.

For some LEFC extracted from a target program, in situ reuse of the
LEFC is accomplished by driving the execution of the target program via
some mechanism such that the instructions specified by the LEFC are exe-
cuted. The described driver must have the ability to modify the instruction
pointer of the target program so that it can be set to the LEFC’s entry
point, and it must also be able to monitor the target program’s subsequent
execution such that it can be stopped upon reaching an exit point and/or
meeting a specified exit condition. Additionally, the driver must be able to
write to and read from memory within the target program’s process space
in order to pass argument values, artificially construct states on which the
LEFC depends, and read values from return locations to be sent to the user
once the LEFC has finished executing.

As will be discussed in much greater detail in Section 7, we have chosen
to construct our driver on top of a debugger. A debugger has all of the pre-
viously discussed requisite abilities necessary to implement a LEFC in situ
reuse driver. Specifically, modern debuggers for the the X86 platform allow
for (1) direct modification of the EIP register (the X86 instruction pointer),
(2) continued execution until a specific address is reached (via breakpoints),
and (3) for read/write access to the debugee’s memory. We have also spec-
ulated that such a driver could be constructed by injecting a new thread di-
rectly into the target program’s process space, however that line of research
has not yet been explored.

5 Formalization

A logically extracted functional component (LEFC) is a collection of in-
formation about a functional component. This collection of information is
referred to as the LEFC’s descriptor. A descriptor for an LEFC consists of
the following (uncommon terms are formally defined shortly hereafter):

10

e Entry Point - The address of the first instruction of the LEFC within
the target program.

e Exit Points and Conditions - A set of addresses within the target pro-
gram through which the LEFC may exit and/or conditions which, when
met, indicate that the LEFC should exit.

e State Elements - A set of 2-tuples of {location, value}, where the loca-
tions must be initialized to the corresponding values in order to artifi-
cially construct some or all of the state on which the LEFC depends.
State Elements are used to decouple the LEFC from the target pro-
gram.

e Parameters - A set of the locations into which values should be placed
such that the behavior of the LEFC may be applied on those values.

e Return Locations - A set of locations whose contents should be returned
to the caller after the LEFC has exited.

The LEFC metadata (name, description, etc.) and the specific low-level
information that must be retained concerning the programmatic items just
described (data types of parameters and return values, accessing locations
by address versus stack pointer offset, etc.) is further detailed in the Section
7.

In order to formalize the definitions of cold, warm, and hot LEFCs, we
first appropriate some terms from data flow analysis and the lambda calculus.
Though the lambda calculus terminology maps well to the current context
when viewed at a slightly abstract level, we stipulate that our use of it is
perforce an abuse of jargon. Let M be a LEFC consisting of instructions, at
least some of which refer to one or more locations. A location is simply a place
where bits are stored; that is, the registers, stack locations, heap addresses,
and the locations to which any of those point (and so on, recursively). Let
REF(M) be the set of locations accessed in M, and let LIV E(M) be the
set of locations used in M before being defined. Specifically, a location x is
in LIVE(M) if there exists a path from the entry point of M over which x is
used without first being assigned to. Let PARAM (M) be the union of the
parameters and the locations in the state element 2-tuples of M. From the
lambda calculus terminology, it is illustrative to let FREE(M) = LIV E(M)
and BOUND(M) = REF(M)\ LIVE(M). M is then said to be closed if
FREE(M) =0, and M is a closure if LIVE(M) C PARAM (M).

11

A cold LEFC is a LEFC that is either closed or a closure. A hot LEFC is
a LEFC that is neither closed nor a closure. A hot LEFC M is also a warm
LEFCifV1e LIVE(M)\ PARAM (M), Il must always be initialized to the
same value in order for in situ reuse of the LEFC to result in the desired
behavior. A truly hot LEFC is a hot LEFC that is not warm.

6 Example LEFCs

We now detail the logical extraction of a functional component from a con-
trived sample program. Consider the following C++ program:

bool add;

int _tmain(int argc, _TCHAR* argv[])
{

add = true;

Add_Or_Subtract (10, 20);

return O;
}
int Add_Or_Subtract(int operandl, int operand2)
{
if (add)
return operandl + operand2;
else
return operandl - operand2;
}

An IDA Pro disassembly of the Add_Or_Subtract() function, compiled
with no optimizations enabled and linked with debug information, is shown
in Figure 2.

Suppose we wish to extract from this contrived program a functional
component that computes and returns the sum of two integers. To do so,
we may construct a LEFC with entry point 0x401010, exit point 0x401024,
parameters at esp+8 and esp+C, and no state elements. Such an LEFC
is hot because it depends on a state (the prior initialization of the Boolean
global variable add to true), but that state information is not available in the
LEFC’s descriptor. In order to run this LEFC, the target program must first
be driven to execute the statement “add = true;” in _tmain(). We also note
that this LEFC is warm because the state on which it depends is always the
same for every execution of the LEFC. Because it is warm, we can convert it
into a cold LEFC by adding a Boolean state element 2-tuple of {0x403000,
true} to the descriptor. The state on which the LEFC depends, which is now

12

ks ~ E2

aase1e1e

aase1e1e

0401818 ; Attributes: bp-based frane

aaseiein

gesE1e18 ; int _ cdecl Add_Or_Subtract{int operandl, int operand2)
apse1018 Tadd_0r_Sublbract@EEYAHHHEZ proc near

aoseiein

88401018 operandi= dword ptr &

aaLBE1 818 operandZ= dword ptr BCh

oByo1010
oBNO1010 push ebp
oBNE1011 now ebp, esp

aphBE1 813 mouzx eax, byte hB30080 ; Bool add
apsBE181A test eax, eax

aanp1eIc jz chort loc_hel02g
I
¥ ¥

i EL i L EX

B848181E mow eax, [ebp+operandi]f (@8401828

8481821 add eax, [ebp+operand2][(88401828 loc 4B1828:

aaNE10828 jmp short loc_48182E A04B1828 mou eax, [ebp+operandi]
- 8481828 sub eax, [ebp+operand?]

¥ *—I

i = EJ

0BN0102E

0B40102E loc_48102E:
0B40102E pop ebp

A04B182F retn
28401 02F TAdd_Or_SublracUEEYAHHHEZ endp
aanB1 B2k

Figure 2: Disassembly of the Add_Or_Subtract() function.

fully described in the LEFCs descriptor, can be artificially constructed by
the LEFC Reuser driver rather than relying on the target program’s code to
construct it. The modified LEFC is now an example of a cold LEFC, because
the target program itself is no longer used to set up the state on which the
LEFC depends.

7 Implementation

LEFC Reuser is a software system that provides for the in situ reuse of
LEFCs. Three major architectural components comprise LEFC Reuser:

1. LEFC Descriptors - XML files which contain descriptors of LEFCs and

13

Funct ionalComponents ::

[l
[Component#+]

Component t:= [(Mame Description Hotness Hotness_Required_State
Entry Exit# State_Element# Parameter# Fetuyrn#)
Entry 1= [(Pointl Enit z2:= (Point, Condition#)
State_Element iz [(SE_Stack) SE_Stack iz [Position_From_Top Valusl
1= [SE_Register) SE_Regizter z:= [Reg UValue
= [SE_Heapl SE_Heap ::z= [(Address Waluel
Parameter 1:= [P_Stack) P_Stack 1:= (1D P_Hame P_Description Pnsltiqn_From_TDﬁ Pointer_Depth)
ri= [P_Register) P_Register z:= [I0 P_Hame P_Description Reg FPointer_Oepth]
= (F_Heap ' Heap ::= (ID F_Hame F_Description Address Fointer_Depth)
Return 1= [(R_Stack) F_Stack 1:= [F_Descr ESP_Offset Deref _Count Sizel
iz [R_Reg Feg ::= (B _Descr Reg Deref _Coynt Size) |
= (F_Heapl F_Heap ::= [(F_Descr Address Deref_Count Sizel

Figure 3: Grammar for LEFC descriptors derived from LEFC Reuser’s
schema.

7.1

conform to LEFC Reuser’s schema.

. LEFC Descriptor Compiler - A program that compiles the high-level

XML descriptor of a LEFC into a set of low-level commands that in-
struct the LEFC Executing Debugger how to execute the LEFC.
LEFC Executing Debugger - We interface with the OllyDbg debugger
via a modified version of the ODBGScript OllyDbg plugin in order to
drive execution of the target program.

LEFC Descriptors

For each target program from which functional components have been log-
ically extracted, an XML file conforming to LEFC Reuser’s schema is gen-
erated and retained. Each such XML file contains one or more LEFC de-
scriptors, where a descriptor contains all of the information required to reuse
a LEFC in situ. A grammar for describing LEFCs, which is both derived
from and maps directly to LEFC Reuser’s schema, is shown in Figure 3. The
terminals of the grammar are defined as follows:

Name - User specified name for the LEFC.

Description - User specified description of the LEFC.

Hotness - Either “Hot” or “Cold”.

Hotness_Required_State - If Hotness is “Hot”, a description of how to put
the target program into the state on which the LEFC depends; otherwise,
the field is unused.

Point - An address of an instruction in the target program’s process space.
Condition - A predicate to be evaluated when the Point is reached. If all
Conditions associated with the Point evaluate to true (or if there are no

14

Conditions), then the LEFC exits.

e Position_From_Top - An integer specifying the position from the top of the
stack in which to store a Value, where the top is position 0, the next location
is position 1, and so on.

e Value - The State_Element’s value.

e Reg - An X86 register (“eax”, “ebx”, “esp”, etc.).

e Address - An address of a memory location within the target program’s
process space.

e ID - A unique integer identifier for each parameter. Used to identify the
parameter being referred to when multiple sets of argument values to run
the LEFC against are provided via a parameter input file.

e P_Name - User specified name for a Parameter.

e P _Description - User specified description for a Parameter.

e Pointer_Depth - An integer specifying the depth of the pointers pointing to
the Parameter. For example, if the Parameter is of type int, then Pointer_Depth
should be 0, however if the Parameter’s type is **int, then Pointer_Depth
should be 2.

e R _Descr - User specified description of the return value.

e ESP_Offset - An integer offset to be added to esp, such that esp + offset
contains a value to be returned to the user (or a pointer to it).

e Deref_Count - An integer specifying the number of times the pointer stored
at the location of the Return (either its esp + ESP_Offset, Reg, or Address)
should be dereferenced to access the actual return value; should be 0 if it is
not a pointer.

e Size - The size in bytes of the value to be retrieved from the specified location.

7.2 LEFC Descriptor Compiler

The LEFC Descriptor Compiler, implemented in C# .NET, takes an LEFC
Descriptor as input and compiles it into a set of low-level commands that
instruct the LEFC Executing Debugger how to execute the LEFC. The LEFC
Descriptor Compiler consists of: (1) A parser that reads in LEFC Descriptors
and validates them with respect to LEFC Reuser’s schema, (2) A mechanism
to compile the high-level XML into low-level commands to be sent to the
LEFC Executing Debugger, and (3) A communication mechanism that allows
the compiler to send its commands to and receive return values from the
LEFC Executing Debugger.

The parser is implemented using the XML parsing and validating func-

15

tionality provided by .NET. Once parsed, the high-level XML descriptor is
compiled into low-level debugger commands which instruct the LEFC Exe-
cuting Debugger how to execute the LEFC. An example illustrating the com-
pilation of a high-level XML descriptor into low-level debugger commands is
given in the following section. Finally, the LEFC Descriptor Compiler opens
the target program in the LEFC Executing Debugger and sends the com-
piled commands to it. When the LEFC Executing Debugger is done running
the commands (when the LEFC has exited), the return value(s) are commu-
nicated back to the LEFC Descriptor Compiler which subsequently returns
them to the caller. Communication between the LEFC Descriptor Compiler
and the LEFC Executing Debugger is facilitated by dropping files containing
debugger commands or return values at pre-determined locations.

7.3 LEFC Executing Debugger

The LEFC Executing Debugger is comprised of the OllyDbg Win32 debugger
and a modified version of its ODBGScript plugin. OllyDbg? is a 32-bit
assembler level analyzing debugger for Microsoft Windows. ODBGScript? is
a plugin for OllyDbg that provides a scripting interface to the debugger. It is
into ODBGScript’s low-level scripting commands that the LEFC Descriptor
Compiler compiles XML descriptors.

The ODBGScript plugin provides all of the requisite functionality neces-
sary to reuse a LEFC in situ. Specifically, it provides direct access to the
X86 instruction pointer EIP, the ability to drive the target program until a
specified exit point is reached and to evaluate if exit conditions are met, and
the ability to read from and write to memory addresses, stack locations, and
registers. Furthermore, it provides the ability to allocate memory within the
target program’s process space, which we often make use of when we artifi-
cially create a state specified by the State_Elements of an LEFC descriptor.

In order to facilitate communication between the LEFC Descriptor Com-
piler and the LEFC Executing Debugger, the ODBGScript plugin was mod-
ified such that it may receive scripting commands programmatically; in
the unmodified version, a user must open a script manually via OllyDbg’s
menu system. The modified ODBGScript plugin was originally written in
C++, and the necessary modifications were made therein. The modified

3http://www.ollydbg.de/
4https://github.com/epsylon3/odbgscript /

16

. Descriptor

.Arguments
User

Target LEFC LEFC LEFC
Program Identifier Descriptors (Person or Descriotor LEFC Target
and Program) o PI Executing Program

ompiler
['U Extractor 2 3 4%omp ' 5Debugger ['U
' 1 ->->. b/
7 6

Figure 4: Work-flow of the LEFC Reuser system.

ODBGScript plugin listens for commands sent by the LEFC Descriptor Com-
piler and runs them upon receipt. After ODBGScript finishes running them,
it communicates the requested return values back to the LEFC Descriptor
Compiler by dropping a file containing them at a pre-determined location.

7.4 Summary of LEFC Reuser Work-flow

Figure 4 illustrates the work-flow of logical extraction and in situ reuse using
our LEFC Reuser system. Descriptions of each of the numbered edges follow:

1. The Target Program is analyzed by the LEFC Identifier and Extrac-
tor which identifies functional components in the Target Program and
logically extracts them into the collection of LEFC Descriptors. No
such LEFC Identifier and Extractor software or algorithms have yet
been developed. In the present work, all functional components have
been identified and extracted manually. Creation of an LEFC Identifier
and Extractor that requires only minimal human interaction forms the
basis for our future work.

2. The User, either a human or a program, obtains a LEFC descriptor
from the collection of LEFC Descriptors.

3. The User sends to the LEFC Descriptor Compiler (1) the selected LEFC
descriptor and (2) a collection of arguments for the functional compo-
nent to be run against.

4. The LEFC Descriptor Compiler (1) compiles the LEFC descriptor and
the arguments into ODBGScript commands, (2) opens the Target Pro-
gram in the LEFC Executing Debugger, and (3) sends the compiled
commands to the LEFC Executing Debugger.

17

5. The LEFC Executing Debugger runs the compiled commands, thereby
driving the Target Program to execute the functional component de-
scribed by the selected LEFC descriptor against the provided argu-
ments.

6. Once all of the compiled ODBGScript commands have been run, the
values at the return locations specified by the LEFC descriptor are
communicated back to the LEFC Descriptor Compiler.

7. The LEFC Descriptor Compiler conveys the return values on to the
User.

7.5 Evaluation of LEFC Reuser

The described LEFC Reuser software system has been successfully tested on
a set of LEFCs that collectively make use of all of the various elements made
available by LEFC Reuser’s LEFC descriptor schema. A mixture of both hot
and cold LEFCs have been tested successfully. Such tested LEFCs included
those with multiple exits, those whose parameters, state elements, and re-
turns make use of all three of the location types (heap, stack, and register),
and those whose return values are obtained by dereferencing pointers. Some
of the sample LEFCs also required that their arguments and state elements
be stored in newly allocated memory within the target program’s process
space.

For a LEFC with descriptor D, LEFC Reuser’s parsing and compilation
algorithms run in O(n) where n is the number of XML elements in D. Of
course, the complexity of actually running (in situ reusing) a LEFC is deter-
mined by the instructions that comprise it.

8 Fortune Cookie Revisited

Having described the LEFC Reuser system, we now show how it may be
applied to the purpose of decrypting all of the encrypted messages in the
Fortune Cookie program. Recall from Section 2 that we do not want to
waste time figuring out how to construct the necessary hKey decryption key
structure ourselves. Because the functionality to properly construct the hKey
is already present within the Fortune Cookie program, we wish to let it do so
for us. Once the Fortune Cookie program has constructed the hKey, we want
to hijack the Fortune Cookie program’s control in order to make it iterate
over and decrypt all of the encrypted messages within itself.

18

Name: "Decrypt"
Description: "Decrypts an encrypted fortune cookie message."

Hotness: "Hot"

Hotness_Required_State: "The state is constructed once the GUI is displayed."
Entry: 0x4016EO0
Exit: 0x4016E6
SE_Stack: {Position_From_Top: O, Value: 0x15D660}
SE_Stack: {Position_From_Top: 1, Value: O}
SE_Stack: {Position_From_Top: 2, Value: 1}
SE_Stack: {Position_From_Top: 3, Value: O}

P_Stack: {ID: 0, P_Name: "Encrypted Data",

P_Description: "Encrypted fortune cookie message.",
Position_From_Top: 4, Pointer_Depth: 1}

P_Stack: {ID: 1, P_Name: "Size of Encrypted Data",
P_Description: "Size in bytes of Encrypted Data.",
Position_From_Top: 5, Pointer_Depth: 1}

R_Stack: {R_Descr: "Decrypted message.", ESP_0ffset: -8,
Deref_Count: 1, Size: 0x48}

Figure 5: Descriptor for Fortune Cookie program decryption LEFC.

Figure 5 shows one possible LEFC Reuser descriptor for the decryption
functional component of the Fortune Cookie program. The structure of the
XML LEFC descriptor maps perfectly to the BNF grammar of Figure 3.
Referring back to Figure 1, we see that the call to CryptDecrypt() is at
0x4016E0, which we specify as the decryption LEFC’s entry point in Fig-
ure 5. 0x4016E6, the address of the instruction immediately after the call
to CryptDecrypt(), is specified as the LEFCs exit point with no associated
exit conditions. The State_Elements given in the descriptor partially de-
scribe (less the Parameters) the setup of the stack necessary for the call to
CryptDecrypt() to correctly decrypt the encrypted fortune cookie messages.
Regarding the State_Element with Position_From_Top=0, on our test system
0x15D660 is always the user-space handle into the kernel-space hKey struc-
ture constructed by the Fortune Cookie program and pushed onto the stack
(via EAX) at line 0x4016DB of Figure 1. Of course, the location at which
the hKey structure is constructed might be different on another system or if
ours were rebooted, but the address is easily re-determinable by observing
the call to CryptDecrypt() when the Get My Fortune! button is pressed.
The given Parameters specify that two arguments, a pointer to an encrypted
fortune cookie message and a pointer to the size of that encrypted message,
complete the decryption LEFC’s setup. Finally, the single Return specifies
that the decrypted fortune cookie message will be pointed to by ESP-8 after

19

the LEFC has exited.

Following is an abstracted snippet of the input file to be provided, along
with the decryption LEFC’s descriptor, to LEFC Reuser:

ArgumentSet:
Arg 0: {ID: 0, IsAddressInTarget: true, Value: 0x542760, Size: 40}
Arg_1: {ID: 1, IsAddressInTarget: false, Value: 40}

ArgumentSet:

Arg 0: {ID: O, IsAddressInTarget: true, Value: 0x5427A4, Size: 30}
Arg_1: {ID: 1, IsAddressInTarget: false, Value: 30}

The input file contains all of the sets of arguments (addresses of the
encrypted fortune cookie messages within the Fortune Cookie program and
their respective sizes) for the decryption LEFC to iterate over and decrypt.

As specified by the decryption LEFC’s descriptor, an ArgumentSet in
this instance consists of two Arguments corresponding to the two given Pa-
rameters. The Argument with ID=0 (referred to as Arg.0) corresponds to
the “Encrypted Data” Parameter in Figure 5 and Arg_1 corresponds to the
“Size of Encrypted Data” Parameter. The IsAddressInTarget field of the in-
put file is a Boolean which specifies whether or not the subsequent Value of
the Argument is the actual value or the address of the value within the target
program’s process space. Finally, if IsAddressInTarget for an Argument is
true, then Size specifies the number of bytes at that address which comprise
the argument’s value. We see that the first encrypted fortune cookie mes-
sage, 40 bytes in size, is located at address 0x542760 in the Fortune Cookie
program. One such ArgumentSet for each encrypted fortune cookie message
is present in the actual input file.

Once LEFC Reuser is provided the decryption LEFC’s descriptor and the
corresponding input file, the LEFC Descriptor Compiler compiles the descrip-
tor into ODBGScript commands and opens the Fortune Cookie program in
the LEFC Executing Debugger. Notification is provided to the user that the
present LEFC is hot, and that in order to construct the state necessary for
the LEFC to run correctly the Fortune Cookie program must first be allowed
to run until its GUI is displayed to the user (see the Hotness_Required_State
field in Figure 5). Once the user notifies LEFC Reuser that the Fortune
Cookie program GUI is displayed, the compiled commands are sent to the
debugger where they cause the Fortune Cookie program to iterate over and
decrypt all of the encrypted fortune cookie messages. Once all of the com-
mands have been run, the debugger returns the location where the decrypted

20

results may be found and LEFC Reuser displays that location to the user.
The password for the Fortune Cookie Challenge, “YoU g0t It!! This 1s d4
K3Y :p”, is found in the decrypted results.

Using the LEFC Reuser system, we have shown how all of the encrypted
fortune cookie messages within the Fortune Cookie program can be decrypted
in a single shot with only a minimal understanding of how the actual decryp-
tion takes place.

9 Related Work

Reuse has long been considered to be a desirable alternative to developing
new code. Efforts toward providing reuse of functionalities from compiled
programs have included work in the field of COTS (commercial off-the-shelf)
software integration. Such integration involves the inclusion of some other
party’s commercial software within your own software system. COTS soft-
ware integration has often been limited due to a lack of provided interfaces
(APIs) to the COTS software functionality. Egyed and Balzer [EBO1] make
the case for reusing what we call functional components from COTS software,
however they only target reuse for functional components which already have
interfaces provided by the original authors. Their major contribution is the
description of a wrapper for provided interfaces which extends those inter-
faces to allow for better synchronization between the caller and the callee. In
general, the theme of this past work in COTS software integration has been
to make usage of provided COTS software interfaces (APIs) less messy. Our
work, on the other hand, can be characterized as the creation and export of
interfaces for functionalities to which no interfaces previously existed.

Instrumentation is a technique for inserting extra code into an appli-
cation to observe its behavior, and dynamic instrumentation is simply the
application of the instrumentation technique on a running process. Dynamic
instrumentation tools such as Pin® [LCM™05] and DynInst® [BH00, WHO4,
RBR*07] provide C++ APT’s that allow a user to insert snippets of code
into a target program to be executed when specified points are encountered
during its execution. The chosen instrumentation framework places trampo-
line code at the points specified by the user. When one of these points is
encountered during the target program’s normal flow of execution, the tram-

Shttp://www.pintool.org/
Chttp://www.dyninst.org/

21

poline code stores the state of the target process and then transfers control
to the snippet. When execution of the snippet has concluded, the trampo-
line code restores the process to its prior state and transfers control back to
the next instruction of the target program. Profilers, cache simulators, trace
analyzers, and memory bug checkers have all been implemented as dynamic
instrumentation snippets. Dynamic instrumentation and in situ reuse are
similar in that they both allow for execution of a target program in ways
unintended by the target program’s original author, however they go about
that goal in quite different ways. While dynamic instrumentation relies on
the target program’s normal flow of control to initiate execution of newly
inserted snippets of code, in situ reuse takes complete command of the tar-
get program’s control in order to drive it to execute code that was already
present in new ways. However, we recognize that the aforementioned dy-
namic instrumentation tools already contain many primitive functionalities
that, if recombined with LEFCs in mind, could provide much of the basis for
a system capable of providing in situ reuse. Specifically, the Dyner [WHO04]
add-on to Dynlnst could quite possibly be extended to work in a fashion
similar to our LEFC Reuser. Furthermore, the abilility to construct condi-
tional breakpoints within the target program’s process space using dynamic
instrumentation [BH00, WHO04] would allow for a much more efficient imple-
mentation of LEFC exit point and exit condition checking than is currently
available to us via our OllyDbg back-end.

Cifuentes and Fraboulet [CF97] and Kiss et al. [KJLGO03] adapted Weiser’s
high-level language slicing techniques [Wei81] (and those technique’s descen-
dants) to the purposes of inter- and intra-procedural slicing on compiled
binaries. However, such slices are taken with respect to either an individual
register or a set of registers at a given instruction, and therefore they are not
analogous to the functional components with which we are concerned. While
these slicing techniques may aide in the identification of state elements, they
cannot directly be used for the purpose of logically extracting executable
functional components. Slicing on binaries also presents other severe prob-
lems, including the need for accurate procedure and call information.

Kolbitsch et al. [KHKK10] extract externally observable behaviors, rather
than functional components, from compiled executables. After selecting some
externally observed behavior reported by a run-time monitor, their technique
uses dynamic slicing to extract a ‘gadget’ that comprises all of the code and
a memory snapshot needed to recreate the selected behavior. The gadget can

22

then be replayed by a gadget player, thereby recreating the exact behavior
of the originally observed program. Because these techniques are primarily
concerned with behavior replay rather than component reuse, conditional
branches in the extracted code are modified in order to force the flow of exe-
cution to always follow the originally observed path. As such, the extracted
behavior is fixed to correspond to a single set of inputs, and cannot generally
be used as a reusable component. For example, sometimes a behavior is only
triggered under specific conditions, such as an update mechanism that only
runs on a specific day of the week. Because their technique is able to identify
and subsequently extract only behaviors whose executions are observable by
their dynamic analysis component, if they are not observing the program
on the day that it conducts its update check, then they cannot identify and
subsequently extract a gadget that replays that behavior.

Caballero et al. [Cab09] proposed techniques to identify and physically
extract callable functions using interface abstraction methods. Primary con-
tributions of their work include the development of a mechanism to identify
the prototype of a binary code fragment and a technique for extracting its
code and data dependencies. Extracted functional components consist of a C
function that contains the extracted code as inline assembly and a header file
that contains the required data. Limitations of Caballero et al.’s approach
include: (1) components with parameters that are recursive structures, such
as trees, cannot be extracted, (2) in order to extract a function, it must first
be observed executing natively at least once (if some specific input is needed
for control to reach the function, they assume it is provided), (3) functions
with variable-length parameter lists such as printf cannot be extracted, and
(4) a component to be extracted may not contain any code that explicitly
makes use of knowledge of its own location.

Logical extraction, in lieu of physical extraction, is able to overcome each
of the aforementioned limitations under certain conditions. While it may be
difficult to identify the exact structure of a complex argument, if the structure
is known a priori and because we leverage functional components within their
original context, then there is no reason that such a component could not
be made externally reusable. Furthermore, while the ability to observe a
functional component execute in its native context is certainly advantageous
when attempting to identify the elements comprising its would-be descriptor,
it is not absolutely necessary; the requisite information could alternatively be
ascertained via static analysis. Even if a functional component’s parameter

23

list is identified as being of variable length, because it will be executing within
its native context there is no reason why a system using logical extraction
could not interface with it if the structure of that parameter list were known.
Finally, since our LEFCs are reused in situ, there are never limitations on
their ability to make use of the knowledge of their own locations within the
target program.

10 Directions for Future Work

Throughout this work, the process of identifying functional components that
may be logical extracted and reused in situ has taken place manually. This
included manually searching for interesting segments of code within compiled
programs that could be logically extracted as useful and reusable functional
components, as well as manually determining those functional components’
state elements, parameters, and returns via both static and dynamic analysis.
Towards the goal of making the present work more useful, many directions
for future work exist. Primarily, automation of the process for identifying
and learning about functional components is a fertile and interesting research
area. Such work might entail usage of novel combinations of machine learn-
ing and classification techniques to automatically identify code that may
comprise interesting or useful functional components, program slicing and
data flow analysis techniques to automatically determine a functional com-
ponent’s state elements and parameters, and variable identification and type
inferencing techniques to more accurately determine the prototypes of func-
tional components. Another possible interesting direction for future work
would be to prove that the set of elements included in LEFC Reuser’s LEFC
descriptor schema comprises the sufficient set of such elements required to
adequately describe all possible functional components.

11 Conclusion

Prior approaches for extracting functional components from compiled pro-
grams have been physical in nature; that is, they generally relied on physically
separating the code and data comprising the functional component from the
target program in which it originally resided. We have shown that not only
does another paradigm exist, that of logical extraction, but that extracting
functional components in this new manner overcomes some of the limitations
of past approaches.

24

We have described the process of logical extraction and the necessary in-
formation that must be stored in order to logically extract most (and possibly
all) functional components, and we have both described how such a LEFC
may be reused in situ and have developed a proof-of-concept implementation
of this process. Formal definitions have been presented for the different types
of LEFCs, cold, hot, warm, and truly hot, and the process for converting a
warm LEFC into a cold LEFC has been described. Results from using our
implementation, LEFC Reuser, have been positive; it has been shown to be
capable of in situ reuse of many logically extracted functional components of
varying complexity.

With the present work, we have taken a step towards meeting the final
goal of being able to treat any compiled executable as a library of exportable
functional components that are reusable by a programmer within his own
programs.

12 Acknowledgments

The authors gratefully acknowledge the contributions of Chris Parich. This
research was sponsored in part by the Air Force Research Laboratory and
DARPA (FA8750-10-C-0171) and the Air Force Office of Scientific Research
(FA9550-09-1-0715).

References

[Agell] Defense Advanced Research Projects Agency. Research An-
nouncement - Binary Executable Transforms (BET) - DARPA-
RA-11-56. Technical report, Defense Advanced Research Projects
Agency, 2011.

[BHOO] B. Buck and J.K. Hollingsworth. An API for runtime code patch-
ing. International Journal of High Performance Computing Ap-
plications, 14(4):317-329, 2000.

[Cab09] J. Caballero. Binary code extraction and interface identifica-
tion for security applications. Technical report, DTIC Document,
20009.

25

[CF97] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of
binary executables. In Software Maintenance, 1997. Proceedings.,
International Conference on, pages 188-195. IEEE, 1997.

[EBO1] A. Egyed and R. Balzer. Unfriendly COTS integration-
instrumentation and interfaces for improved plugability. In Auto-
mated Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on, pages 223-231. IEEE, 2001.

[KHKK10] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector Gad-
get: Automated extraction of proprietary gadgets from malware

binaries. In 2010 IEEE Symposium on Security and Privacy,
pages 29-44. IEEE, 2010.

[KJLGO3] A. Kiss, J. Jasz, G. Lehotai, and T. Gyiméthy. Interprocedu-
ral static slicing of binary executables. In Source Code Analysis
and Manipulation, 2003. Proceedings. Third IEEE International
Workshop on, pages 118-127. IEEE, 2003.

[LCM105] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V.J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation.

In ACM SIGPLAN Notices, volume 40, pages 190-200. ACM,

2005.

[RBR™07] G. Ravipati, A.R. Bernat, N. Rosenblum, B.P. Miller,
and J.K. Hollingsworth. Toward the deconstruc-
tion of Dyninst. Technical report, Computer Sci-

ences Department, University of Wisconsin, Madison
(ftp://ftp.cs.wisc.edu/paradyn/papers/Ravipati07SymtabAPI.pdf),
2007.

[Wei81] M. Weiser. Program slicing. In Proceedings of the 5th interna-
tional conference on Software engineering, pages 439-449. IEEE
Press, 1981.

[WHO04] C.C. Williams and J.K. Hollingsworth. Interactive binary instru-
mentation. Intl. Works. on Remote Anal. and Measurement of
Softw. Sys, pages 312-327, 2004.

26

