
MODERN STEGANOGRAPHY: AN OVERVIEW

By

Craig Stephen Miles

Bachelor of Science, Mathematical Sciences, Oregon State University, Corvallis, OR 2007

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science

In Computer Science

The University of Montana
Missoula, MT

Spring 2010

Approved by:

Perry Brown, Associate Provost for Graduate Education

Graduate School

Dr. Joel Henry, Chair
Computer Science

Dr. Min Chen

Computer Science

Dr. George McRae
Mathematical Sciences

ii

Miles, Craig, M.S., Spring 2010 Computer Science

Steganography: A Survey of Hiding Data in Common File Types

Chairperson: Dr. Joel Henry

Steganography is the art and science of writing hidden messages in such a way that no
one, apart from the sender and intended recipient, suspects the existence of the
message. While originally limited to using objects from the physical world as a channel
for covert communication, the omnipresence of the modern PC has provided a new
source of cover-objects for steganographic communication: digital files.

In digital steganography, hidden messages are embedded into computer files in such a
way that the message’s existence is (hopefully) undetectable by anyone except the
sender and the recipient. To an outside observer, the object containing the embedded
message should appear and function exactly as it would if it did not contain such a
message.

To illustrate the capacity of modern steganography to provide a medium for secret
communication, algorithms are developed herein to embed and recover messages
within digital images. The same algorithms are subsequently implemented in an
accompanying computer program: CommonSteg.

iii

TABLE OF CONTENTS

TABLE OF FIGURES ... v

ACKNOWLEDGMENTS ... vi

CHAPTER 1 INTRODUCTION .. 1

1.1 Purpose ... 1

1.2 What is Steganography? ... 1

1.3 Formalization .. 6

CHAPTER 2 STEGANOGRAPHIC SECURITY .. 9

2.1 Overview ... 9

2.2 Zöllner et al.’s Information Theoretic Security Model .. 10

2.3 Katzenbeisser and Petitcolas’ Practical Model ... 14

2.4 A Conditionally Secure Steganographic System ... 18

2.5 Steganographic Capacity ... 21

CHAPTER 3 IMAGE STEGANOGRAPHY .. 24

3.1 Image Overview .. 24

3.2 Steganographic Categories ... 25

3.3 Spatial Domain Embedding ... 26

3.3 Transform Domain Embedding ... 29

CHAPTER 4 FILE FORMAT STEGANOGRAPHY .. 33

4.1 Introduction .. 33

4.2 JPEG File Format Steganography .. 33

4.3 ZIP File Format Steganography ... 35

4.4 Combining File Format Steganography... 38

CHAPTER 5 COMMONSTEG .. 40

5.1 Introduction to CommonSteg ... 40

5.2 Hiding Images within Images .. 40

5.3 Hiding Text within Images ... 43

5.4 Hiding Text in Images More Securely with Random Walk 45

5.5 Security Analysis of Random Walk Algorithm... 48

CHAPTER 6 Conclusions .. 52

6.1 Usage Estimates .. 52

iv

6.2 Additional Applications of Steganographic Techniques ... 53

6.3 Final Thoughts ... 55

Bibliography .. 57

APPENDIX .. 59

Appendix A – RSA Public Key Cryptography ... 59

Appendix B – Brute Force Attack Output For CommonSteg’s Random Walk Algorithm
... 61

Appendix C – CommonSteg User’s Manual .. 67

Appendix D – CommonSteg Source Code ... 71

MainForm Class ... 71

ImageSteg Class .. 75

v

TABLE OF FIGURES

Figure 1: Numeric table from Book 3 of Trithemius' "Steganographia" (Trithemius 1621) 2

Figure 2: Illustration of Simmons' modernized "Prisoners' Problem" (Unknown 2007) 3

Figure 3: Basic Model of a Steganographic System (Zöllner, et al. 1998) 7

Figure 4: Color palette illustrating encoding of various colors using 24 bits. 24

Figure 5: Original Image and Modified Image with Every Color Intensity Value's LSB Set
to 0 .. 27

Figure 6: Bit Plane Decomposition .. 28

Figure 7: Possible DCT Coefficient Table after Quantization (Austin 2010) 30

Figure 8: JPEG Encoding Process (Westfeld and Pfitzmann 2001) 31

Figure 9: JFIF Segment Format (Wikipedia contributors, 2010) 34

Figure 10: The ZIP File Format (Aeschbacher 2009) ... 36

Figure 11: Cover-Image and Message to be Embedded ... 43

Figure 12: Stego-Image and Retrieved Message .. 43

file:///C:/Users/umcs/Desktop/School/Thesis/Thesis.docx%23_Toc262403727

vi

ACKNOWLEDGMENTS

I wish to convey my sincerest gratitude to the faculty of the Computer Science
department at The University of Montana, and particularly to Professor Joel Henry, for
providing me the opportunity to continue my academic career. I’ll never be able to fully
express how profoundly thankful I am that you saw potential in me.

1

CHAPTER 1 INTRODUCTION

1.1 Purpose

The purpose of this thesis is to demonstrate a mastery of available scholarship in the

field of Digital Steganography. Briefly, steganography is the study of sending invisible

messages; messages which are hidden within some other innocuous object. Following

an introduction and formalization of the field, a survey of the various way in which it

may be applied to common computer file types, with a specific focus on digital images,

is conducted.

A computer program called CommonSteg has been written in conjunction with this

thesis to demonstrate many of methods of hiding data within common file types as

described herein.

The types of files for which steganographic techniques will be described include JPEG,

GIF, PNG images, and ZIP compressed archives. In addition to steganographically hiding

information in these specific file types, the concept of hiding information at higher levels

of abstraction, such as in image data itself regardless of the container type, will also be

explored.

1.2 What is Steganography?

Steganography, a rough translation of ‘secret writing’ from Greek, is traditionally

defined as the art and science of writing hidden messages in such a way that no one,

2

apart from the sender and intended recipient, suspects the existence of the message.

The first recorded use of the term was in Steganographia, a primer on early

cryptography and steganography written by Johannes Trithemius in 1499. The full title

of Trithemius’ treatise roughly translated from Latin to English is: “Steganography: the

art through which writing is hidden requiring recovery by the minds of men. (Judge

2001)” Steganographia was written as a trilogy; the first two often being described as

some of the earliest books on cryptology. The third part, however, is ostensibly a book

on occult astrology in which Trithemius included tables of numbers, Latin characters,

and zodiac symbols. It wasn’t until nearly five centuries later that researchers

discovered that Trithemius had hidden additional messages in the book, including the

humorous note, “The bearer of this letter is a rogue and a thief. Guard yourself against

him. He wants to do something to you.” In hiding these messages, Trithemius managed

to steganographically hide information within the series of books in which he had

formalized the concept in the first place.

Figure 1: Numeric table from Book 3 of Trithemius' "Steganographia" (Trithemius 1621)

3

A common description of steganography is Simmons’ “Prisoners’ Problem” (Simmons

1984), summarized and modernized by (Cachin 2005): Alice and Bob are in jail, locked

up in separate cells far apart from each other and wish to devise an escape plan. They

are allowed to communicate by means of sending messages via the warden Eve’s

trusted couriers, provided they do not deal with escape plans. If Eve detects any sign of

conspiracy, she will thwart the escape plans by transferring both prisoners to high-

security cells from which nobody has ever escaped. Alice and Bob succeed if they can

exchange information allowing them to coordinate their escape and Eve does not

become suspicious.

Figure 2: Illustration of Simmons' modernized "Prisoners' Problem" (Unknown 2007)

Throughout history there have been numerous documented accounts of the passing of

concealed messages, even before Trithemius formalized the idea of Steganography.

One of the earliest examples is that of Histaiaeus in the 5th century BC. He tattooed a

4

message onto the shaved head of a messenger who upon regrowing his hair delivered

himself to the recipient. Another example from antiquity involved the sending of a

message to the Spartans warning of a Persian invasion. Messages of the time were

often written into wax covered wooden tablets. In order to covertly deliver the

warning, the Greeks scraped the wax off of a tablet, carved the warning into the wood

itself, and then reapplied a layer of wax thereby giving the impression that the tablets

were indeed blank.

More recently, Nazi Germany during World War II employed the usage of the Microdot

to serve as a Steganographic means of communication. No larger than a period or the

tittle of an i or j, what appeared to be merely a dot to the naked eye was actually an

image or text that had been shrunken down to a miniscule size, visible only via the use

of a microscope.

During the Vietnam War, American Admiral (then Commander) Jeremiah Denton Jr. was

captured by the North Vietnamese. He was forced by his captors to take part in a

television interview during which he blinked in Morse code the word “T-O-R-T-U-R-E” in

order to let it be known that the Vietnamese were torturing him and the other prisoners

of war. In doing so, Commander Denton successfully managed to send a Steganographic

message via the enemy’s own communication channels unbeknownst to them; a truly

remarkable feat.

5

The majority of documented cases regarding the usage of Steganographic techniques

prior to the personal computer age seem to be primarily related to military endeavors;

however that is no longer the case in modern times. There is often a need for privacy in

communication, however many people living under repressive regimes and those who

work for many companies may find that the usage of encryption is banned by those in

charge. For example, a 2000 survey (Madsen and Banisar 2000) found that Belarus,

Burma, China, Kazakhstan, Pakistan, Russian, Tunisia, and Vietnam all had placed strong

domestic controls on the use of cryptography. For those who are in a situation requiring

privacy of communication yet are unable to send encrypted messages in the open

without fear of reprisals, steganography can provide a safer means of getting one’s

message out. Steganographic techniques have been used by dissidents and human

rights campaigners around the world to smuggle information and messages out of

repressive areas, and the same techniques have also been used by corporate

whistleblowers to leak information.

Various forms of Steganography have indeed been used by numerous individuals,

organizations, and governments over the centuries for a multitude of purposes,

including military, diplomatic, and personal communications, as well as for the

concealment of intellectual property (Judge 2001).

Many of the earliest forms of steganography were no more complex than the usage of

invisible ink to write additional text between the lines, however through the passage of

6

time, steganographic models have become increasingly complex. In the modern age,

steganography most often refers to the hiding of a message or information within a

computer file. For example, messages or information can be hidden within an image file

or music file without impeding the ability of that file to perform as a user unaware of

the secret message’s existence would expect.

1.3 Formalization

Before proceeding into a discussion of how information may be hidden into common

computer files, it is first useful to formalize Steganography by defining its related

terminology.

A cover-<data_type>, where <data_type> represents the medium that will carry the

hidden message, is the seemingly innocuous object into which the message will be

placed. For example, if a message is to be concealed within an image, the original image

is to be referred to as a cover-image. When the cover-<data_type> is combined

steganographically with the message to be hidden, the resulting output is referred to as

the stego-<data_type>. In the previous example, the output of steganographically

hiding a message into the cover-image is a stego-image. The process by which the

message is hidden into the cover-<data_type> is referred to as the stego-system, or

more specifically, the embedding function of the stego-system. If some sort of

additional information beyond the stego-<data_type> itself is required in order to

recover the hidden message, that information shall be referred to as the stego-key. An

7

individual who attempts to determine whether or not a given message contains

steganographically hidden information is called the stego-analyst. This information

hiding terminology was agreed upon in (Pfitzmann 1996). A stego-system is considered

to be secure if a stego-analyst cannot distinguish between a message containing no

hidden information and a stego-message (Cachin 2005).

The model in Figure 3 is an illustrated version of the basic model of a steganographic

system as defined using the terminology of (Pfitzmann 1996).

Figure 3: Basic Model of a Steganographic System (Zöllner, et al. 1998)

The input, cover, is the innocuous data into which emb will be hidden by the function fE.

If necessary to the particular stego-system, fE will also make use of the shared-secret

8

input: key. fE outputs stego, data which appears to be the same as cover, yet also

contains emb. The function fE
-1 allows the recipient to extract emb* and possibly cover*

from stego, both of which should be equal to or an approximation of the original emb

and cover respectively.

Using Figure 3 as guidance, we can define the embedding process as follows:

stego = fE(cover, emb, key).

This assumes an m bit cover into which we hide an n bit emb. For later purposes, I also

adopt the following notation:

C: the set of all bitstrings
cover: actual bitstring of length m (cover ∈ C)
E: the set of all bitstrings
emb: actual bitstring of length n (emb ∈ E)
K the set of all keys
key: actual key (key ∈ K)
S: the set of all bitstrings (S = C)
stego: actual stego, i.e. bitstring the contains emb (stego ∈ S)

9

CHAPTER 2 STEGANOGRAPHIC SECURITY

2.1 Overview

Steganography and cryptography serve similar purposes. Both fields attempt to provide

private communication between multiple parties, however they go about it by different

means. In a cryptographic system, all parties are aware of the existence of the

encrypted messages. The cryptographic system is said to be broken if someone besides

the intended recipient is able to obtain any information about the original message. As

opposed to cryptography, a steganographic system fails if anyone but the sender and

intended recipient even becomes aware of the existence of the hidden message. As

such, a steganographic system’s security can be defined in terms of undetectability. A

perfectly secure stego-system would be undetectable 100% of the time.

Referring back to the Prisoners’ Problem, steganalysis is the set of techniques by which

Eve may attempt to distinguish between innocent messages and stego-messages. Note

that this distinction may need to be made without Eve knowing either the stego-key (if

there is one) or the stego-system employed. Eve need not, however, ascertain the

actual steganographically hidden message in order to succeed, but rather she must only

determine the existence of the message.

Breaking a steganographic system thus has two stages (Zöllner, et al. 1998):

1 The attacker can detect that steganography has been used.

2 Additionally, he may be able to read the embedded message.

10

Multiple approaches have been developed in order to define and quantify

steganographic security. In (Zöllner, et al. 1998), the authors provided an analysis to

show that information theoretically secure steganography is possible if both the

embedding operation is non-deterministic and emb is independent from the cover and

the stego. Whereas Zöllner’s methodology is useful for ascertaining whether a scheme

enjoys perfect security from a theoretical viewpoint, (Katzenbeisser and Petitcolas 2002)

describe a model more applicable for characterizing the security of real world

steganographic systems. Summaries of both of these models for describing

steganographic security follow.

2.2 Zöllner et al.’s Information Theoretic Security Model

In the field of cryptography, multiple types of crypto-analytical attacks are defined, all

being based upon how much information the attacker is presented with. In a

ciphertext-only attack (also known as a known ciphertext attack), the attacker is

assumed to have access only to a set of ciphertexts. The attack is considered successful

if the attacker is able to ascertain the plaintext(s). There is also the notion of a chosen-

plaintext attack. In such a scenario, the attacker has the ability to choose arbitrary

plaintexts to be encrypted and obtain the corresponding ciphertexts (Wikipedia

contributors 2010). A chosen-plaintext attack is successful if the attacker is able to

deduce information related to the cryptographic scheme in use such that its security is

reduced.

11

Both of these attacks can be morphed into similarly structured attack models for the

purpose of steganalysis. The ciphertext-only attack becomes the stego-only attack, in

which the attacker only knows stego. The chosen-plaintext attack becomes a stego-

cover attack, where the attacker knows both stego and cover. Using information theory,

we can prove that secure steganography is impossible in a stego-cover attack if the

stego-system is deterministic. By deterministic, it is meant that given the same inputs to

the stego-system, the output will always be the same.

Information theory is a statistical theory dealing with the limits and efficiency of

information processing (Princeton University n.d.). A standard measure of the theory is

entropy. Entropy quantifies the uncertainty when encountering a random variable

(Wikipedia contributors 2010). For a given alphabet X, the entropy H(X) describes the

“uncertainty about X”, which more accurately means the uncertainty about the

occurrence of a certain element x ∈ X. The remaining uncertainty about X when

knowing Y is defined as H(X|Y). H(X,Y) = H(X) + H(X|Y) is the “union” of both entropies,

also known as the joint entropy. Finally, the mutual information I(X;Y) = H(X) – H(X|Y)

describes the amount of information about X you get if you know Y (Gallager 1968).

Zöllner et al state that a stego-system is information theoretically secure if the attacker

cannot gain any information about emb or E by examining stego and cover, thus there

must be zero mutual information:

12

I(E;(S, C)) = H(E) – H(E|(S, C)) = 0 (1)

This reduces to the fundamental security condition:

H(E|(S, C)) = H(E) (2)

Plainly written, this states that knowledge of stego or cover may not reduce the

uncertainty in emb. The result of this observation is that emb (or E) must always be

independent of stego and cover (or S and C respectively).

Because an attacker should not be able to differentiate between a cover and a stego,

not only can we assume that their alphabets S and C are the same, but also that their

entropies H(S) and H(C) are equal. We do, however, see differences in the conditional

entropies between the cases of whether or not an emb was embedded:

- Without embedded information: H(S|C) = H(C|S) = 0

- With embedded information: H(S|C) = H(C|S) > 0

Via the connection of entropy and information, we see that the uncertainty about S if

we know C (or vice versa) corresponds to the information about E that you can get by

looking at S and C. Therefore, by embedding emb ∈ E into cover ∈ C, mutual

information is inevitably non-zero:

I(E;(S,C)) = H(E) – H(E|(S,C)) > 0 (3)

Thus:

H(E|(S,C)) < H(E) (4)

This result, however, contradicts the security condition of (2). As such, we find that the

necessary and sufficient condition for secure steganography is:

13

H(S|C) = H(C|S) = 0 (5)

As such, for a stego-system to be secure, it must hold that:

∀i∈N, stegoi∈S, coveri∈C : stegoi = coveri.

The secure steganography is reduced to a practically irrelevant case: cover ≡ stego. In

other words, in a deterministic stego-system, the only way to provide perfect security is

to find a cover that already contains emb. If we disregard this implausible case, we find

that the security condition in (2) can never be fulfilled if fE is deterministic and the

attacker knows both cover and stego.

In order to remedy this lack of security, Zöllner et al propose an alternative to the basic

steganographic model from Figure 3. In this new model, the cover is selected from a

defined set of possible covers called the source. Rather than allowing the attacker to

know the actual cover, the attacker may only know the source from which the cover was

derived. For example, consider that the cover is created from a sampling of an analog

input, i.e. line audio. Even if the attacker knows that said analog input is the source of

the cover, as long as the produced stego remains within the domain of possible analog

input, the manipulations added during the embedding process cannot be recognized as

such. If we define the source of cover to be CS, then the previous statement holds true

as long as the following conditions are true:

(a) H(C,CS) ≥ H(C) + H(E)

(b) H(C|S) ≥H(E)

14

(c) H(CS|S) ≥H(E)

In such a scenario, as long as the attacker does not know the actual cover, but rather

just the source from which the cover is derived, then the steganographic system is

proven to be information theoretically secure.

2.3 Katzenbeisser and Petitcolas’ Practical Model

The previous information theoretic model for steganographic security assumes a

steganalyst equipped with unlimited computational power and a detailed knowledge of

statistical information of the cover-object’s source. While holding these assumptions is

a necessity for the design of a theoretically perfectly secure steganographic system, in

practice they are rarely if ever met. In (Katzenbeisser and Petitcolas 2002),

Katzenbeisser and Petitcolas attempt to define steganographic security in a more

relevant and practical way.

The drawbacks to using an information theoretical model to define steganographic

security are multifold. First, while it is possible to come up with steganographic systems

fulfilling the previous definitions of perfect steganographic security, it turns out that

they are all impractical in most situations. The proposed systems are generally some

variant of the Vernam scheme from cryptography (one-time pad), redefined to fit under

the previous security definitions. The same limitations that make the usage of the one-

15

time pad difficult, such as insecure key distribution and the requirement of perfect

randomness for the creation of the key, carry over to the proposed stego-systems.

Additionally, the previous security definition requires knowledge of the probability

distribution of C which is the set of all bitstrings from which the cover may be derived

(also previously referred to as the source). In practice, this probability distribution is

rarely known. For example, while it may be possible to approximately model the

distribution of all “meaningful” grey-scale images, it is not possible to compute their

exact distribution. If the distribution’s approximation error is greater than the

modification applied during the embedding process, then said approximation becomes

irrelevant to the decision making process. Complicating the usage of a meaningful

distribution approximation even more in the decision process, the steganalyst may need

to find an approximate model for the messages that are “usually” sent between the

sender and the recipient, as using a general model might not be sufficient. For example,

consider the cover-source to be the set of grayscale images; however, the sender only

ever uses a specific subset of the total possible shades of gray in his covers. In such a

scenario, the stego-analyst’s approximate model of all “meaningful” grayscale images is

no longer relevant to the particular problem.

Finally, the previous model assumes that the stego-analyst has access to limitless

computing power. That is an unreasonable assumption in the real world. In practice,

one would generally be convinced of the security of a steganographic system if it were

16

to pass all probabilistic polynomial tests for determining whether or not a possible

stego-object actually contained an embedded message.

Intuitively, the relative inability of an attacker to distinguish covers (containing no

hidden information) from stego-objects is used to quantify the security of

steganographic systems. In order to model this with regard to the previously discussed

limitations of the information theoretical security models, Katzenbeisser and Petitcolas

define a steganographic decision problem faced by the steganalyst: “Given any cover or

stego-object, he must be able to guess (better than random) whether a secret message

is actually contained in the object or not” (Katzenbeisser and Petitcolas 2002). In order

to facilitate this decision, the attacker can compare the suspected stego-object against

“common” objects usually sent between the sender and recipient. By comparing the

stego-object against the set of all transmitted objects, the eavesdropper may reevaluate

and improve the decision problem strategy.

In addition to the previously stated notation, we now define a steganographic system as

a 3-tuple <G, E, D> of probabilistic polynomial time algorithms. The algorithm G serves

as the key generation process, which outputs a random k ∈ K to serve as the stego-key.

Algorithm E is the embedding operation which upon inputs c ∈ C, m ∈ M, and k given by

algorithm G, outputs a stego-object s ∈ C. Finally, D represents the Message Retrieval

Algorithm, which when given inputs s and k outputs m′ ∈ {0,1}* where if s actually

contained a secret message m, then m = m′. Finally, the steganographic decision

17

problem is formally defined as follows: Given s ∈ C, determine if there exists a k ∈ {0,1}*

in the range of G and a message m ∈ M such that D(s,k) = m.

Given this decision problem, we can now model and quantify the security of the

steganographic system. To do this, we assume the eavesdropper has access to two

oracles. The first, called the steganographic oracle is an infinite sequence of covers c1,

c2, …, such that each is a member of C. This oracle allows the observer to generate an

arbitrarily large number of possible cover-objects. The structure evaluation oracle, on

the other hand, allows the observer to generate stego-objects. It takes as input any c ∈

C and any m ∈ M and returns the corresponding stego-object s containing m. This

structure evaluation oracle works as a black-box, embedding messages into covers given

a fixed key k, even if k is unknown to the attacker.

The security test is then modeled as a game between the eavesdropper and a judge.

First, the judge runs G in order to generate a k ∈ K. He uses this k to create the structure

evaluation oracle, which is given to the eavesdropper along with the steganographic

oracle. The eavesdropper is then allowed to query both oracles as many times as he

likes, where he may perform polynomial-time computations on any objects he receives

from the oracles. Once finished, the judge uses the steganographic oracle to generate

two covers: c1, c2 ∈ C. He also selects a message m ∈ M randomly and uses the structure

evaluation oracle to embed m into c2 resulting in s. Finally, using a fair coin toss to

decide which, he either provides the eavesdropper c1 or s. The eavesdropper then

18

performs whatever probabilistic tests he desires in order to determine whether or not

he was given the cover-object c1 or s containing some hidden message m and publishes

his guess. The steganographic system is then secure for the steganographic oracle if the

eavesdropper’s advantage, that is the probability of a correct guess minus ½, is

negligible. The ½ is subtracted because the eavesdropper can randomly guess correctly

between c1 and s half of the time.

A steganographic system is said to be U-Secure if for a given steganographic oracle U, at

the end of the previously described game, the eavesdropper has a negligible advantage.

The steganographic system S = <G, E, D> is then said to be conditionally secure if for a

set of steganographic oracles C, ∀ U ∈ C, S is U-secure. In other words, the

steganographic system is said to be conditionally secure if it is secure for every oracle. It

is referred to as conditionally secure due to the fact that many schemes that would be

considered such would not be considered perfectly secure from an information

theoretic viewpoint, in which it is often assumed the eavesdropper has either unlimited

computational power or access to an exact probability distribution in order to aid in the

decision making process.

2.4 A Conditionally Secure Steganographic System

Having discussed steganographic security in the context of perfect security as defined by

information theory and conditional security in terms of what is applicable to the real

19

world, a steganographic system fulfilling the conditions of conditional security yet

remaining information theoretically insecure will now be outlined.

The creation of such a system, even with the new and more reasonable constraints on

the eavesdropper, still faces several difficulties. Significant leeway must be given in

what may be permissible to use as the cover source. The security of a steganographic

system S can be based on some set of computational problems that are thought to be

intractable. For example, assume a system for which there is an embedding function E

that embeds some message m into the least significant bits of an image such that the

distribution of the least significant bits remains unchanged. Let G, the stego-key

generation algorithm of S, be the key generation function of the RSA public-key

cryptosystem. If necessary, see Appendix A for an explanation of the RSA encryption

system. Assume now that for every transmission of an image between the sender and

the recipient, if there is no steganographic message to be hidden then the image is

modified as follows: a random string x of length n is selected by the sender, a 0 is

appended to the end, and then it is encrypted using RSA and the resulting ciphertext is

embedded into the image. On the other hand, if there is to be a steganographic

message hidden in the cover, the sender selects his message m, pads the end of m with

bits until it reaches length n, then appends a 1. This concatenated message is then

encrypted with RSA and embedded into the image. The end result of the employment

of such a system is that all messages passed along the communication channel always

contain some encrypted embedded string. In order then for an eavesdropper to decide

20

with non-negligible advantage that a communication contains a steganographic

message rather than a random string, he must be able to determine the least significant

bit of the embedded message. It was shown in (Goldwasser, Micali and Tong 1982) that

if an attacker is successfully able to decrypt the least significant bit of an RSA encrypted

ciphertext, then he would be able to efficiently decrypt the entire message. As such, in

order for the eavesdropper to differentiate between covers containing steganographic

messages and those containing random garbage, it would then be implied that he had

invented an attack against RSA cryptography capable of ascertaining the least significant

bit of the encrypted message, thereby violating the intractability of the entire

cryptographic system.

Such a system would be considered conditionally secure because no polynomial time

algorithm to determine the least significant bit of an RSA encrypted ciphertext is known

to exist. However, the same system cannot be said to be perfectly secure in the

information theoretic sense due to the fact that in that security model there are no

restrictions on unbounded computational power. In the information theoretic models,

the steganographic system is considered insecure even if the model is susceptible only

to a brute-force attack.

As discussed before, the broad measure of a steganographic system’s security is its

undetectability. However, the very notion that the attacker should not be able to gain

any information about the embedded message implies that there is indeed a message.

21

A similar contradiction exists in the steganographic system that has been laid out in this

section. Kerkhoff’s Principle is an axiom of cryptography which states that the security

of a cryptographic system should remain uncompromised even if everything about the

cryptosystem, except the key, is public knowledge (Katzenbeisser and Petitcolas 1999).

The same idea holds for steganography. For true steganographic security, the entire

security of a stego-system must rely on the stego-key alone. It must be assumed that an

attacker knows exactly how the stego-system works. If a stego-system does not employ

a stego-key, it is trivial for an attacker who understands the system to determine

whether or not an embedded message is present, thereby compromising any security.

Referring back to the Prisoners’ Problem once again, we must assume that by

Kerckhoffs’ Principle the warden is fully aware of how the system works. In such a

scenario, there would be no reason for the warden to allow any cover messages from

the source as described to be delivered between Alice and Bob. It remains an open

problem to determine a provably secure steganographic system whose cover source

would not inherently raise suspicion that steganographic communication is at least

occasionally taking place.

2.5 Steganographic Capacity

The maximum size of a steganographically hidden message is limited by the number of

redundant bits within the cover-object. Steganographic capacity in general is quantified

as the maximum amount of information that can be embedded into a cover-object and

22

that then can be reliably recovered from the stego-object, under the constraints of

undetectability and perceptual intactness (Kharrazi, Sencar and Memon 2004). Because

steganographic systems have the fundamental requirement of undetectability, when

data is hidden steganographically into a digital cover medium the embedding process

must preserve not only the perceptual intactness of the cover-object but also its

underlying statistical properties as well.

In the vast majority of cases, the smaller the embedded message is and the larger the

cover is, the less probability there is of introducing detectable statistical changes. Each

steganographic system seems to have its own upper-bound for its maximal safe

message length that determines the number of message bits that can be embedded

without introducing detectable statistical deviations.

The steganographic capacity SC of a stego-system is a function of the cover-object cover

and the embedding function emb. SC(cover, emb) then is the maximum number of bits

that can be securely embedded into cover by embedding function emb such that no

detectable statistical deviations are introduced into the stego-object. In this context,

securely means that the advantage of any attacker when attempting to determine the

steganographic decision problem remains negligible.

Surprisingly, there has been very little work published pertaining to steganographic

capacity estimates for real world steganographic systems. Notable exceptions include

23

the work of (Chandramouli and Memon 2001), which provide a rigorous theoretical

analysis of the capacity to introduce binary distortions in the spatial domain, and the

work of (Fridrich, Goljan and Hogea 2003) that briefly touches on the capacity of two

well-known steganographic embedding algorithms for use on JPEG images. These

analyses only provide approximations for the SC of the respective schemes, however.

Determining the SC exactly for even the simplest steganographic systems remains a very

difficult and as of yet unsolved problem, except for the special case when SC has

previously been determined to approach 0. An example of such a case is the embedding

of a steganographic message into a palette image (GIF). Such images store a reduced

128 color palette within the image. Any additionally necessary colors are then added to

the palette by adding their distances from the main color palette. In doing so, the

embedding of messages by making slight modifications to a pixel’s color would result in

clusters of close colors that are practically never created by image encoding algorithms

themselves. As such, a GIF image may be determined to have been steganographically

modified by simply observing the structure of its internal color palette without ever

even taking into considering the image data itself.

24

CHAPTER 3 IMAGE STEGANOGRAPHY

 3.1 Image Overview

To a computer, an image file is an array of numbers that represent light intensities at

various points (pixels) (Johnson and Jajodia 1998). Color variations for the pixels are

derived from the three primary colors: red, green, and blue. In a 24-bit image, the color

information for each pixel is represented as three bytes, where each byte represents the

intensity of one of the primary colors. In hexadecimal representation, a white pixel

would be stored as the triplet (FF,FF,FF): 100 percent red intensity (FF), 100 percent

green intensity (FF), and 100 percent green intensity (FF). Likewise, a black pixel would

be stored as (00,00,00) and a purely red pixel would be (FF,00,00).

Figure 4: Color palette illustrating encoding of various colors using 24 bits.

Storing an image purely as a set of triplets results in a RAW image. As there is no

compression of the image data, the size of the file grows linearly with the number of

pixels present in the file. The need to decrease file sizes has lead to the creation of

numerous image file formats. Of these, the majority seek to compress the size of the

image file without noticeably degrading the quality of the image.

25

The various image file formats employ two types of compression: lossless and lossy.

Lossless compression reduces the size of the image file while still allowing for the exact

recovery of the original raw image if necessary. Examples of lossless image file formats

include GIF, PNG, and BMP. Formats which employ lossy compression, on the other

hand, use algorithms during the compression stage that can result in very close

approximations to the original RAW image. Once a RAW image is converted into a

format employing lossy compression, however, it is impossible to revert the image back

to an exact copy of the original. JPEG is the most common lossy format.

 3.2 Steganographic Categories

Digital image files serve as perhaps the most common cover-object for the passing of

steganographic messages in the age of the personal computer. Given the plethora of

image file formats, it would be impossible to comprehensively enumerate every method

of hiding steganographic messages in image files. It is possible, however, to combine

many unique stego-system into broad categories.

These categories include (Kharrazi, Sencar and Memon 2004):

 Spatial Domain Embedding

 Transform Domain Embedding

26

 3.3 Spatial Domain Embedding

The steganographic principle of undetectability mandates that an embedded message

must not modify its cover-object in such a way that is observable to an attacker. The

result of this concept in terms of digital steganography is that the message must be

embedded into the redundant bits of the cover-object. In other words, only bits whose

state being flipped would cause a negligible increase in advantage for an attacker

attempting to determine the steganographic decision problem may be modified during

the embedding process.

In a digital image stored in a lossless format, the color intensity information for each

pixel is stored as a triplet of bytes. Different values for these bytes allow the computer

to differentiate between various colors. In order for the human eye to notice the

difference between the two different colors, the intensity values for those colors must

be significantly different. In other words, a pixel with red intensity 254 is not

discernable from a pixel with red intensity 255.

Because only high order modifications result in a change to the visual appearance of an

image, the least significant bits of the pixels’ color intensity values can be changed

without introducing visual degradation of quality. To illustrate this, an image has been

modified by setting the least significant bit of every color intensity value in the entire

image to 0.

27

Figure 5: Original Image and Modified Image with Every Color Intensity Value's LSB Set to 0

The original dimensions of the image (prior to being shrunk to fit into this document)

are 480 x 720 pixels, thus there are 345,600 total pixels. Each pixel has three color

intensity values R, G, and B where each color’s least significant bit is flippable without

visual disturbance. In such an image and only taking into account the least significant

bit of each color intensity, we find there are 1,036,800 redundant bits; roughly 127

kilobytes that can be modified as desired.

While setting every color intensity’s least significant bit to 0 does not visually affect the

image, doing so drastically changes the statistical distribution of those bits. For

example, if the least significant bit of any byte is 0 then the byte is known to be even. In

setting the least significant bit of every color intensity to 0, every color intensity of every

pixel was forced to be even. The probability that a digital camera would encode an

image with only even intensity values is infinitesimally small, especially as the

28

dimensions of the image increase. Such an obvious outlying statistic would lead an

observer to believe the image had been modified following its original encoding.

The previous example only took into account the least significant bit of a color intensity

value. The least significant bit, however, is not necessarily the only redundancy. Figure

6 shows a bit plane decomposition of an image.

Figure 6: Bit Plane Decomposition

The top left is the original image and each following image reading to the right and

wrapping around at the new line shows what happens when each subsequent least

significant bit is set to 0. To clarify, the first two images share the same relationship as

those in Figure 5; the original versus a modified version with every color’s least

significant bit set to 0. The third image is the original modified where each color’s two

least significant bits are set to 0. The pattern progresses sequentially until the final

image in the lower right which leaves only the most significant bits of the color intensity

29

values intact, while setting all other bits to 0. Such an example serves to illustrate how

very much an image’s color information may actually be modified without drastically

altering the visual image.

 3.3 Transform Domain Embedding

Rather than dealing with the redundancy located in the actual color information as the

spatial domain embedding methods do, transform domain embedding deals with the

redundancy introduced by the various image compression algorithms themselves. In

section 2.1, it was explained that JPEG is a lossy image format; that is, the encoding

algorithm does not store an exact representation of the color information for each pixel,

but rather it attempts to generate an accurate approximation of those colors. While

negating the ability to store embedded messages directly into the color information, the

application of these algorithms result in a new form of pixel descriptors. These

descriptors, much like the color intensity values described in the previous section, may

also be resistant to causing visual degradation when only their least significant bits are

modified.

A complete explanation of the JPEG image encoding algorithm is beyond the scope of

this document; however, a brief explanation of its introduction of redundancy is in

order. The RGB values of the raw image’s pixels are converted via an invertible color

space transform function to a new triplet vector, whose components represent

luminance, Y, and blue and red chrominance, Cb and Cr. Once converted, the algorithm

30

breaks the original bitmap image into 8x8 blocks of pixels. Each 8x8 block of pixels is

represented by three 8x8 tables of integers containing the luminance and both sets of

chrominance information. The values in these tables undergo a discrete cosine

transform, or DCT. A DCT converts the image information to a set of average values and

how much each pixel differs from this average value. Because the function is only

operating on small 8x8 blocks of pixels, it is safe to assume that in many cases, the

differences from the average would be relatively small and hence safely ignored (Austin

2010). The application of a DCT in conjunction with a quantization method, basically a

lossy rounding function, results in 8x8 tables of DCT coefficients where the value in the

upper left corner essentially represents the average over the block and values below or

to the right represent horizontal and vertical frequency variations respectively.

Figure 7: Possible DCT Coefficient Table after Quantization (Austin 2010)

Such a table contains many 0’s, otherwise thought of as a significant lack of deviation in

the pixel from the average, where what is significant is determined in the quantization

step by a quality factor specified by the user. Because so many 0’s are present, rather

31

than recording them all individually, the compression functions simply stores the

number of consecutive 0’s via a process called Huffman Encoding.

Figure 8: JPEG Encoding Process (Westfeld and Pfitzmann 2001)

It is mostly the non-zero values in the DCT coefficient tables which provide a possible

location to embed steganographic messages. Small variations in these numbers, such as

modifying their least significant bits, result in no more visual degradation than

modifying the least significant bits of the color intensities in the spatial domain

embedding examples. The reason for being unable to change the 0’s themselves to hold

message data is that doing so often would noticeably effect the compression rate

(Kharrazi, Sencar and Memon 2004).

Numerous commercial and academic steganographic systems designed to hide

messages in the DCT coefficient tables of JPEG images are available, all of which provide

varying degrees of undetectability. Two such algorithms are F5 (Westfeld and Pfitzmann

2001) and Outguess (Provos 2001).

32

The F5 algorithm embeds messages into the least significant bits of the DCT coefficient

tables, but the DCT coefficients are permuted prior to embedding. The permutation

serves to spread the changed coefficients evenly over the entire image, rather than

simply modifying the first m coefficients available. Without such a strategy, an attacker

may through statistical analyses be more easily able to determine the existence of a

steganographic message as the hidden information is not distributed uniformly over the

image, but rather the entire change is located in one specific place.

The Outguess algorithm takes a more active approach to selecting the DCT coefficients

which are appropriate for modification. The algorithm attempts to identify the

redundant bits which have minimal effect on the cover-image, rather than just evenly

distributing the changes throughout the file. Additionally, the authors of Outguess

realized that a common steganalysis technique was to observe the distribution of DCT

coefficients as a histogram. In such a scenario, if too many changes were made during

the embedding process, noticeable outliers would begin to emerge. To counteract that

threat, in addition to inserting the message, additional bits beyond the embedding of

the actual message are also modified to readjust the stego-object’s histogram back

towards the cover-object’s original shape.

33

CHAPTER 4 FILE FORMAT STEGANOGRAPHY

 4.1 Introduction

For provably secure steganography to take place, the specifics of the steganographic

system in use must be assumed to be known to all attackers. However in reality, there

may often be occasions where such an assumption is overkill. Consider for example a

situation in which the sender of a steganographic message knows ahead of time how

the attacker functions. In terms of digital steganography, if a sender knows that the

attacker’s only method for determining if a stego-object has embedded information

hidden within it is by checking whether or not the file functions as expected, then the

previous considerations for security are no longer necessary.

In such a situation, it is logical for a sender to employ the simplest steganographic

system possible that does not impede the original functionality of the file. To that

extent, several common file formats allow for the embedding of hidden data into the

file structure itself.

4.2 JPEG File Format Steganography

JPEG images are one of the most commonly found file types in modern computing.

Websites generally contain numerous images and a high percentage of those images are

often encoded using the JPEG format.

34

All JPEG images share a similar structure as defined by the JPEG File Interchange Format

(JFIF) and thus contain a standard metadata header at the beginning of the file known as

the JFIF segment. Following the JFIF segment header is the actual image data. The

format of a JFIF segment is illustrated in Figure 9.

Field Size
(bytes)

Description

Magic Number (APP0 marker) 2 Always equals 0xFFE0

Length 2 Length of segment excluding APP0 marker

Identifier 5 Always equals “JFIF” (with zero following)
(0x4A46494600)

Version 2 First byte is major version (currently 0x01),
Second byte is minor version (currently 0x02)

Density Units 1 Units for pixel density fields

 00 – No units, aspect ratio only
specified

 01 – Pixels per inch

 02 – Pixels per centimeter

X density 2 Integer horizontal pixel density

Y density 2 Integer vertical pixel density

Thumbnail width (tw) 1 Horizontal size of embedded JFIF thumbnail
in pixels

Thumbnail height (th) 1 Vertical size of embedded JFIF thumbnail in
pixels

Thumbnail data 3*tw*th Uncompressed 24 bit RGB raster thumbnail
Figure 9: JFIF Segment Format (Wikipedia contributors, 2010)

In terms of steganography, the Density Units, X density and Y density are the notable

fields in the JFIF section header. In order to decode and display a JPEG image, many

image libraries (such as those used by Microsoft Paint, Windows Photo Gallery, Internet

Explorer, and Mozilla Firefox) first parse the JFIF section header and from the Density

Units, X density and Y density are able to determine in bytes the size of the image data

35

that follows the header. Once the size of the image data is determined, the JPEG

decoding implementation reads from the file beyond the fixed size header that number

of bytes and renders the pixels on the screen accordingly. Because these

implementations read a pre-specified number of bytes following the header, rather than

reading to End-Of-File, additional data can be appended to the end of a JPEG image that

will be altogether ignored by the programs displaying the image. In this way, any JPEG

image encountered could contain a hidden message at the end of the file that would

remain unnoticed unless the user inspected the contents of the file with a hex editor.

It should be noted that similar ideas hold for various other common image file formats

such as PNG, GIF, ICO, and certain BMP images.

4.3 ZIP File Format Steganography

The ZIP file format is a data compression and archive format and can be thought of as a

container that holds one or more files that have been compressed to reduce size, or

stored as is. Because the ZIP file format is an open standard as described in (PKWARE,

Inc. 2007), many different implementations to handle ZIP files have been created, and of

those implementations several allow for the hiding of various amounts of

steganographic data within the ZIP file without an adverse effect upon its operation.

A ZIP file consists of any number of File Entries all of which share a common format,

followed by a structured section known as the Central Directory. The Central Directory

36

contains a list of the File Entries stored in the ZIP archive along with their corresponding

locations in the file (specified as relative offsets to the Central Directory). It is from this

Central Directory listing that libraries implementing ZIP functionality determine the

contents of the ZIP without having to parse the entire file, and then only upon the

request of the user is the location of the file to be decompressed determined and

subsequently extracted from the archive. A visual representation of the ZIP file format

is depicted in Figure 10.

Figure 10: The ZIP File Format (Aeschbacher 2009)

Because of the addressable nature of File Entries within ZIP files as provided by the

Central Directory and the fact that their location is specified via relative offset within a

structure located at the end of the file, any amount of data may be prepended

(appended to the beginning) to the ZIP file without invalidating the offsets stored in the

Central Directory’s index. As such, several ZIP implementations such as WinZIP prior to

37

version 8.0 and all versions of WinRAR will operate on ZIP files where data has been

prepended to the file. More recent versions of WinZIP and the ZIP implementation built

into Microsoft Windows no longer allow for this channel of steganographic information

however, as they check (the author assumes) to ensure that the first bytes of the ZIP file

are that of a valid File Entry. In order to verify this assumption, one would have to

reverse engineer either WinZIP or the Windows utility to determine the algorithm, and

neither program’s license allows end-users to reverse engineer the software.

Beyond the steganographic channel previously described, the ZIP file format allows for

another method of hiding information within it. The ZIP file format provides for the

author to include a comment, which is generally an explanatory textual message to be

embedded within the ZIP file. The comment is stored in the Central Directory structure,

specifically at the end of it, and is allowed to be of arbitrary size. As such, the comment

field is in fact located at the end of the file. Because the comment field is of variable

size amongst different ZIP files, the beginning of the Central Directory structure is not

located at a fixed offset from the end of the file in all ZIP files but rather is determined

by the size of the comment. In order to determine the location of the Central Directory,

all ZIP implementations must parse the file (most logically in reverse) until they locate

the bytes that specify the beginning of the Central Directory as laid forth in the ZIP file

format. Finally, there is a field in the Central Directory which specifies the size in bytes

of the comment. The ZIP implementation reads the specified number of bytes at the

location of the comment field and this becomes the comment as displayed to the user.

38

No modern ZIP implementations the author has found, however, check for data

following the comment field. Similar to the JPEG image, data can again be appended to

the end of the file that is altogether ignored by the programs working on the file.

Using the two steganographic channels of the ZIP file format, someone can prepend and

append any amount of data to a ZIP file and it will still function properly with WinZIP

prior to version 8.0 and all versions of WinRAR.

4.4 Combining File Format Steganography

In the previous two sections, it has been shown that any amount of data may be

appended to the end of a JPEG image and likewise data may be prepended and

appended to a ZIP file, where doing so does nothing to impede the expected

functionality of said files. Such a scenario gives rise to a steganographical experiment: Is

it possible, using the steganographic idiosyncrasies of the previously described file

formats, to combine files of those formats in such a way that both remain functional at

the same time? In fact, it is absolutely possible to do so.

Because libraries that work with JPEG images only read a certain number of bytes from

the beginning of the file as specified by the header and ZIP files determine the location

of File Entries from a relative location as specified towards the end of the file, a ZIP file

may be appended to the end of a JPEG image. Subsequently, if the resulting file is

39

opened within an image viewer, the JPEG image will be displayed. Alternatively, if the

file is opened in a program that manipulates ZIP files, it will also work as expected.

An interesting example of such a system is included in the Associated Files of this

document. A ZIP file called source.zip containing an unmodified image, source.jpg, was

generated. A new file called merged.jpg was created by appending the binary contents

of source.zip past the end of source.jpg. The file merged.jpg opens in an image editor

and displays the exact same image is source.jpg. However, if merged.jpg is renamed to

merged.zip, it may be opened in WinZIP prior to version 7.0 or WinRAR and the original

source.jpg may be extracted back out. In summary, a single file was generated that may

be viewed as an image or may, via the application of the ZIP extraction algorithm,

extract the same image out of it.

40

CHAPTER 5 COMMONSTEG

5.1 Introduction to CommonSteg

CommonSteg is a computer program written in Visual C# in order to illustrate several

practical steganographic techniques outlined in this document. Pertaining to images, it

contains algorithms to embed one image into the least significant bits of another,

embed text into the least significant bits of an image either sequentially or via a keyed

“random walk,” and also has the ability to extract the messages embedded via those

algorithms back out of the stego-objects. CommonSteg also provides the ability to

easily append data to the beginning or end of any file, thereby providing support for the

techniques listed in the File Format Steganography section.

The user’s manual for CommonSteg can be found in Appendix B, and the source code in

Appendix C.

5.2 Hiding Images within Images

CommonSteg contains functionality to embed a hidden image into a secondary cover-

image. The algorithm to embed one image into the least significant bits of another is

defined as follows:

Image Embedding Algorithm
(1) Check that both the cover-image and message image have equal dimensions. If

so, continue to (2), else exit.
(2) For each pixel in the message image, perform the following steps:

a. Determine the intensity of the redness of the pixel via its RGB values.
Intensity is said to be high if 255 >= R >= 192, mid if 191 >= R >= 128, low
if 127 >= R >= 64, and zero if 64 > R.

41

b. Determine the intensity of the greenness of the pixel using the same
methodology as for redness.

c. Determine the intensity of the blueness of the pixel using the same
methodology as for redness.

d. At the same pixel location in the cover-image, for each of the three
colors:

i. If the color intensity in the message image is high, then replace
the 2 least significant bits of the color’s byte with 11.

ii. If the color intensity in the message image is mid, then replace the
2 least significant bits of the color’s byte with 10.

iii. If the color intensity in the message image is low, then replace the
2 least significant bits of the color’s byte with 01.

iv. If the color intensity in the message image is zero, then replace
the 2 least significant bits of the color’s byte with 00.

More generally, the embedding process works by categorizing the intensity of each of

the three primary colors into four distinct ranges. The range into which the color falls is

then embedded into the least significant bits of the corresponding pixels in the cover-

image.

In performing this algorithm, the visual quality as perceived by the human eye of the

subsequently produced stego-image remains unchanged. The quality of the embedded

message, however, is likely significantly degraded via the process. Because the intensity

values for each pixel are encoded using only two bits for each color, the process reduces

the palette of the message image from whatever its original color count was to a total of

64 possible colors; that is, there are four possible shades for each of the three primary

colors which can be combined in 4 x 4 x 4 = 64 possible ways.

42

The retrieval algorithm functions in the reverse manner. The least significant bits for

each color in each pixel of the stego-image are read and subsequently amplified. For

example, if during the embedding algorithm a pixel was determined to have a high red

intensity (red intensity >= 192), then the two least significant bits in the byte were set to

11. These bits are then amplified by bit-shifting the byte 6 positions to the left,

resulting in 11000000 (192 decimal). Similarly, a pixel with color intensity in the low

range would have had its least significant bits set to 01, which upon amplification would

result in a color intensity of 01000000 (64 decimal). If all of the more significant bits

were simply discarded, rather than implementing the amplification process, the

resulting image would only contain color intensities of 0, 1, 2, and 3 (all decimal)

respectively. Such a result would provide no distinction between the colors in terms of

what is visible to the human eye.

Image Retrieval Algorithm
(1) For each pixel in the stego-image, perform the following steps:

a. For each color intensity value Red, Green, Blue:
i. Obtain the intensity of the color (as a byte).

ii. Perform a 6-digit bitwise left shift of the byte.
iii. Set the resulting value as the new color intensity.

The following two images served as inputs to CommonStegs image embedding
algorithm, representing the cover-image and the message image to be embedded into
the cover respectively.

43

Figure 11: Cover-Image and Message to be Embedded

The algorithm output the following visually identically stego-image. The image retrieval

algorithm subsequently recreated a 64-color approximation of the original message.

The retrieved message, while being noticeably degraded in quality, is still perfectly

identifiable.

5.3 Hiding Text within Images

In addition to hiding an image within another, CommonSteg also has the ability to hide

ASCII text messages within the least significant bits of a cover-image where not only is

Figure 12: Stego-Image and Retrieved Message

44

there no visual degradation of quality of the outputted stego-image, but the extracted

message itself remain fully intact.

The algorithm works by obtaining the ASCII character code for each character in the

text, converting it to a byte, and starting from the most significant bit encodes the value

sequentially into the least significant bit of the red intensity value of the image’s pixels,

starting from the upper left and wrapping at the end of a row. Finally, eight 1’s are

embedded immediately beyond the end of the actual message in order to represent the

end of the message. This results in a string of characters terminated by a character with

ASCII value 255. The value 255 was chosen arbitrarily to serve as the terminator, and

may not be ideal in terms of avoiding deviations from an observable distribution of least

significant bits. In theory, any value outside the range of printable ASCII characters

would work just as well as 255.

Embed Algorithm
(1) User selects cover image and message text. For the total pixel count t of the

cover image and the message length n, if t >= (n*8)+8 is true, continue to (2),
else exit.

(2) For each character in the message text, perform the following:
a. Obtain the ASCII code of the character (a byte) and convert it to binary.
b. For each bit in the byte, starting from the most significant, perform the

following:
i. Starting from the most upper-left pixel of the cover image reading

to the right and wrapping around at the end of each row, replace
the least significant bit of the next unchanged pixel’s red intensity
value with the message bit.

c. Starting at the pixel immediately following the final pixel modified in step
b, set the least significant bit of the red intensity for eight consecutive
pixels to 1.

45

Retrieval Algorithm
(1) While the character c retrieved from the stego-image does not have ASCII value

255, perform the following steps:
a. Let c = 0 and ii = 7. While ii >= 0, do:

i. Starting from the most upper-left pixel of the cover image reading
to the right and wrapping around at the end of each row, obtain
the red intensity value of the next previously unread pixel.

ii. If the red intensity value is odd, set c = c + 2^ii.
iii. Decrement ii by 1.

b. If c is not 255, convert the byte via the corresponding ASCII code to a
character and concatenate it to the extracted message string.

(2) Output extracted message string to the user.

While the algorithm described does generate a visually equivalent stego-image, if an

attacker is aware of the algorithm used to embed the message, determining whether or

not an embedded message is present is trivial.

5.4 Hiding Text in Images More Securely with Random Walk

By Kerckhoffs’ Principle, a steganographic scheme should be secure even if its

algorithms are known by the attacker; that is, the security should rely entirely on the

stego-key. In order to rectify this problem, a second technique for steganographically

embedding text into an image is provided in CommonSteg. This second set of

algorithms is more secure because rather than embedding the message bits

consecutively and in order starting at the upper-left of the image, the pixels containing

the message bits are distributed pseudo-randomly throughout the image.

To accomplish this, a pseudorandom number generator (PRNG) is employed to

determine the specific pixels that are to hold the message bits. A PRNG is an algorithm

46

which attempts to produce a sequence of independent random numbers with a

specified distribution (Knuth 1969). The PRNG takes as input an arbitrary seed value

that sets the initial state of the algorithm and outputs a sequence of random integers

within the bounds as specified by the user. Providing a PRNG with the same seed will

result in the same sequence of pseudorandom numbers every time. In this case, the

default PRNG provided by Microsoft in the .NET Framework Random Class Library,

Donald Knuth’s Subtractive Random Number Generator algorithm (Microsoft

Corporation 2010), is used in conjunction with a user provided seed value to generate a

sequence of integers from a uniform distribution within the range of zero and the total

count of pixels in the cover image minus one inclusive. The numbers in this sequence

are then converted to (X,Y) pixel coordinates which subsequently determine the

locations to insert the message bits.

Because a PRNG always generates the same sequence when it is initialized with the

same seed value, the recipient of the stego-object is able to ascertain the locations the

message bits if he knows said seed value. As such, in this steganographic scheme, the

seed value acts as a stego-key. Because any pixel in the image is equally as likely as any

other to have been selected to hold a message bit and also because determining the

locations and ordering of those message-holding pixels now requires a shared secret

between the sender and the recipient, ascertaining whether or not a possible stego-

object contains an embedded message is no longer trivial for an attacker, even if he is

aware of the algorithm via which it was embedded.

47

Rather than following a predefined location pattern as in the first text hiding algorithm,

a steganographic scheme is said to employ a “random walk” if the locations into which

the message bits are hidden are determined with a degree of randomness.

Random Walk Embed Algorithm

(1) User selects cover image, message text, and a seed value s. If the seed value is
not a valid 32-bit signed integer, exit. For the total pixel count t of the cover
image and the message length n, if t >= (n*8)+8 is true, continue to (2), else exit.

(2) For each character in the message text, perform the following:
a. Obtain the ASCII code of the character (a byte) and convert it to binary.

For each bit in the byte, do:
i. Using the PRNG initialized with s, generate the next random

number k in the sequence within the bounds of zero and the total
pixel count of the image minus one inclusive. If k has already
been seen in the sequence, discard it and repeat step b.

ii. Where w is the width of the cover image in pixels, convert k to an
(x,y) coordinate as follows:

1. x = k % w where % is the modulus operation.
2. y = k / w where / is the division operation that only returns

whole numbers.
iii. For the pixel at coordinate (x,y), replace the least significant bit of

the red intensity value with the message bit.
(3) Perform the following eight times:

a. Continuing to use the PRNG initialized with s, generate the next random
number k in the sequence within the bounds of zero and the total pixel
count of the image minus one inclusive. If k has already been seen in the
sequence, discard it and repeat step b.

b. Convert k to (x,y) coordinates using the same process as before.
c. For the pixel at coordinate (x,y), replace the least significant bit of the red

intensity value with 1.

Random Walk Retrieval Algorithm

(1) Input PRNG seed value s from the user.
(2) While the byte c retrieved from the stego-image is not 255, perform the

following steps:

48

a. Let c = 0 and ii = 7. While ii >= 0, do:
i. Using the PRNG initialized with s, generate the next random

number k in the sequence within the bounds of zero and the total
pixel count of the image minus one inclusive. If k has already
been seen in the sequence, discard it and repeat step i.

ii. Convert k to an (x,y) coordinate via the same process as in the
embedding algorithm.

iii. Read the red intensity value of the pixel at (x,y). If it is odd, set c =
c + 2^ii.

iv. Decrement ii by 1.
b. If c is not 255, convert the byte via the corresponding ASCII code to a

character and concatenate it to the extracted message string.
(3) Output extracted message string to the user.

5.5 Security Analysis of Random Walk Algorithm

It is obvious that many of steganographic techniques demonstrated herein have little to

zero steganographic security in terms of the security frameworks discussed previously.

This is because if the attacker knows the steganographic system used to embed the

message, it is trivial for him to ascertain whether or not such a message is present in any

given stego-object. That is not the case for CommonSteg’s Random Walk Textual

Embedding steganographic scheme, however, due to the introduction of a stego-key.

In terms of Zöllner’s information theoretic security framework, the Random Walk stego-

system is far from perfectly secure. For one, the stego-key must be drawn from a

bounded domain: the set of signed 32-bit integers greater than or equal to 0. This

range, 0 to +2,147,483,647, is well within the brute-forcible capacity of a modern PC’s

computational power. In addition, if the attacker knows with relative accuracy the

distribution of the least significant bits of the red intensities of the pixels in images from

49

the source, which in this case would be the set of images encoded into the PNG format,

statistical analyses on the pixels of possible stego-images might reveal deviations from

the norm. Such deviations would lead the attacker to believe that the image might

contain a steganographic message. Because the amount of deviation from the standard

distribution is directly related to both the length of the embedded message and the

dimensions of the image into which it is to be embedded, special consideration must

occur when selecting a cover-object to hold a message of a particular length. A

steganographer who embeds a single character message into an image using

CommonSteg’s embedding algorithm will modify at most 16 bits within the image; 8 bits

for the character and an additional 8 for the terminator. Exactly 16 bits need not always

be modified as there is a chance that a pixel chosen by the PRNG to hold the message

bit already matches it. Given a sufficiently large image, it is safe to say that the

deviation from the source distribution introduced by modifying such a small number of

bits would be within the error range of the attacker’s source distribution.

Another consideration for practical security was that an attacker should be able to

differentiate between actual messages embedded via the steganographic scheme and

other artifacts which merely appear to suggest the existence of a message. While a

combination of brute-forcing the stego-key and a heuristic technique for determining

whether or not a string of characters is plain English might very well determine the

existence of a sentence embedded into a stego-object, such an attack could not succeed

with any significant degree of accuracy if the length of the message contained was

50

limited to a relatively short string of characters. In other words, as long as the

embedded message is sufficiently short, such as in the case of a single previously agreed

upon character, a heuristic algorithm for determining whether or not a decoded

message is English would inherently provide a negligible advantage in successfully

deciding the steganographic decision problem. Even if an attacker were to brute-force

every possible stego-key, the likelihood of finding numerous single valid ASCII characters

is so high that identifying any of them as an actual steganographic message would be an

unreasonable assumption. As such, I therefore conclude that for sufficiently short

messages relative to the dimensional size of the cover-image, CommonSteg’s Random

Walk embedding algorithm is conditionally secure.

To support this conclusion, a brute-forcer designed to attack the Random Walk

algorithm is also included in CommonSteg. The attack functions by retrieving the

message embedded for each possible stego-key. If a returned message is found to only

contain valid ASCII characters, then it is logged. However, if a character outside of the

range of valid ASCII characters is found, that seed is immediately invalidated and the

attack code proceeds to the next. To conduct the experiment, a cover-image with no

steganographically hidden message was selected. The attack retrieved and counted all

valid ASCII messages for stego-keys in the range of 0 through 100,000,000 inclusive. See

Appendix D for the detailed results.

51

In summary, the attack conducted on a standard image with dimensions 604 x 453

(pixels) found that 234,875 out of the 100,000,001 attempted stego-keys resulted with

the return of an embedded message containing only valid ASCII characters. The

somewhat optimized attack took 1752 seconds to complete on a 2.66 GHz Intel Core 2

Quad CPU with 4 GB of RAM available. This rate can be extrapolated to determine the

duration of the time needed to brute-force the entire keyspace on such a machine:

roughly ten and a half hours. Since no steganographic message was actually hidden

within the image, all 234,875 ASCII messages that were logged were false positives. This

gives an estimated false positive occurance rate of 234,875 / 100,000,001 ≈ 0.23%. Such

a rate implies that the image would roughly contain 2,147,483,648 * 0.23% ≈ 4,939,212

false positives.

Again, Appendix D shows a sample listing of the false positives found within the image.

It is obvious that a grammatically structured plaintext message would stand out

distinctly from the list of false positives present, the majority of which are no longer

than a single character or two and make no sense in terms of formal language.

However, if the message could be conveyed in only a single character (perhaps y or n to

indicate yes or no), then access to such a log of all valid ASCII character messages

contained within the stego-object should provide negligible advantage when

determining the steganographic decision problem.

52

CHAPTER 6 Conclusions

6.1 Usage Estimates

In 2001, USA Today reported that terrorists organizations such as Al Qaeda were using

steganography to covertly deliver instructions and messages to their followers (USA

Today 2001). Specifically, it was stated that U.S. officials confirm that terrorist messages

had been steganographically embedded into X-rated pictures on several pornographic

websites. In response, researchers at the University of Michigan attempted to

determine the presence of steganographic activity on the internet by scraping JPEG

images from multiple popular sources and subjecting those images to steganalysis

(Provos and Honeyman 2001). Two million JPEG images were scraped from eBay.com

and an additional one million were culled from Usenet. All of the images were

subjected to a series of tests designed to identify steganographic embedding by four

common steganography programs. For those images that tested positive for suspicion

of containing an embedded message, a comprehensive dictionary attack was employed

to determine if a message was actually present within the image. To this date, and after

scanning over three million total images, they have not found a single hidden message.

From this statistic, one can infer that obtaining steganography usage estimates is an

inherently difficult task. Because the entire purpose of steganography is the

undetectability of its usage and as those steganographic techniques become more

advanced, it becomes an increasingly impossible task to accurately quantify the amount

of usage actually taking place. While accurately quantifying usage may be outside of the

53

realm of possibility, it is reasonable to assume that steganographic communications to

some degree are taking place simply by the sheer prevalence of information related to

steganographic techniques. A Google search for the term Steganography returns about

447,000 pages containing the term at the time of writing and a search of scholarly

publications via scholar.google.com with the key word steganography results in roughly

16,500 articles.

6.2 Additional Applications of Steganographic Techniques

Steganography was defined as the art and science of writing hidden messages in such a

way that no one, apart from the sender and intended recipient, suspects the existence

of the message. There are, however, many other scenarios where the usage of

steganographic techniques such as those described herein are applicable, yet do not fit

perfectly into that definition. For example, there is no need for that which is hidden to

be a message (rather than data) and also it might very well be the case that the creator

of a file containing steganographic information may not want the recipient, if there even

is one, to know of the hidden data’s presence. These realizations give rise to two

related yet slightly different studies: data hiding and watermarking.

In a data hiding scenario, a user may attempt to hide some private information from all

other parties by embedding it steganographically into some innocuous file. While

making use of a steganographic embedding function to perform that task, the act of

54

doing so does not actually fall under the standard definition of steganography because

there is no other intended recipient and as such the corresponding stego-object is never

sent anywhere.

The inverse of the data hiding scenario is that of the watermarking scenario. In this

case, a content provider may wish to identify the source of a file if it is leaked beyond its

intended recipients. To do so, the provider may make use of a steganographic

embedding function to hide an identifying marker such as the recipient’s name into the

file. If the file is subsequently leaked, the provider may retrieve the watermark from the

file in order to determine who was responsible. Such watermarking techniques are

often employed for the purposes of intellectual property control. A prime example is

the watermarking of Hollywood movies, whereby the producers embed recognizable

artifacts into the movies which may be used to identify the theater to which it was sent.

In doing so, the source of movies pirated onto the internet may be determined. The

study of creating robust watermarks resistant against an adversary attempting to

remove them is currently an active field.

Due to their significant overlap, the three distinct fields of steganography, data hiding,

and watermarking might best be combined into one related topic called covert

information hiding. A definition of such a new field might be: The art and science of

hiding information in such a way that no one apart from the creator and those he

informs suspects the existence of the information. Such a new definition removes the

55

unnecessary qualifiers that lead to the alternate descriptions of such closely related

topics in the first place.

6.3 Final Thoughts

The evolving practice of steganography has been in use for thousands of years. From its

humble beginnings on a man’s scalp, the techniques available to covertly deliver

messages continue to increase in sophistication as the desire for greater security against

being found out rises. As such, steganography and its related branches of data hiding

and watermarking are increasingly active fields in the disciplines of Computer Science

and Information Theoretics.

Several other academic entries relating to steganography have ended with a reference

Poe’s “The Purloined Letter”, implying that sometimes hiding your message in plain

sight might be the better option. Inclined to do the same, I reference the story itself:

“The more I reflected upon the daring, dashing, and discriminating
ingenuity of D-- . . . the more satisfied I became that, to conceal this
letter, the Minister had resorted to the comprehensive and sagacious
expedient of not attempting to conceal it at all.”

The parallel to steganography is obvious, notwithstanding Poe’s misstatement: that D--

made no effort to conceal the letter, when in fact he wrote a new address on the back

of the stolen one, refolded it the opposite way, and sealed it with his own seal. Hiding a

message within an innocuous cover object is really no different than resealing a letter

56

with your own stamp and leaving it in the open. It is just important not to forget that

an amateur detective saw right through D--‘s ploy.

57

Bibliography

Aeschbacher, N. The ZIP64File Java Library, Technical Documentation, Version 1.2. 2009.
http://www.enterag.ch/enterag/downloads/Zip64File_TechnicalDocumentation.pdf.
Austin, D. Image Compression: Seeing What's Not There. 2010.
http://www.ams.org/samplings/feature-column/fcarc-image-compression (accessed
April 4, 2010).
Cachin, Christian. "Digital Steganography." In Encyclopedia of Cryptography and Security.
Springer Verlag, 2005.
Chandramouli, R., and N. Memon. "Analysis of LSB Based Image Steganography
Techniques." Proc. of ICIP 2001. Thessaloniki, Greece, 2001.
Fridrich, J., M. Goljan, and D. Hogea. "New methodology for breaking steganographic
techniques for JPEGs." SPIE Symposium on Electronic Imaging. Santa Clara, CA, 2003.
Gallager, R.G. Information Theory and Reliable Communication. New York: John Wiley &
Sons, 1968.
Goldwasser, S., S. Micali, and P. Tong. "Why and how to establish a private code on a
public network." Proc. 23rd IEEE Symp. on Foundations of Comp. Science. Chicago, 1982.
134-144.
Johnson, N.F., and S. Jajodia. "Exploring Steganography: Seeing the Unseen." IEEE
Computer, 1998: 26-34.
Judge, J.C. Steganography: Past, Present, Future. November 30, 2001.
http://www.sans.org/rr/papers/index.php?id=552 (accessed April 14, 2010).
Katzenbeisser, S., and F.A. Petitcolas. Information hiding techniques for steganography
and digital watermarking. Norwood, MA: Artech House Books, 1999.
Katzenbeisser, S., and F.A.P Petitcolas. "On Defining Security in Steganographic
Systems." Proceedings of SPIE, Security and Watermarking of Multimedia Contents IV.
San Jose, CA: International Society for Optical Engineering, 2002. 50-56.
Kharrazi, M., H.T. Sencar, and N. Memon. Image Steganography: Concepts and Practice.
Lecture Note Series, Singapore: Institute for Mathematical Sciences, National University
of Singapore, 2004.
Knuth, D.E. The Art of Computer Programming, Vol 2: Seminumerical Algorithms.
Reading, Mass.: Addison-Wesley, 1969.
Madsen, Wayne, and David Banisar. Cryptography and Liberty 2000 - an International
Survey of Encryption Policy. Washington DC: Electronic Privacy Information Center,
2000.
Microsoft Corporation. .NET Framework Class Library - Random Class. 2010.
http://msdn.microsoft.com/en-us/library/system.random.aspx (accessed May 8, 2010).
Pfitzmann, B. "Information hiding terminology." Information Hiding, First International
Workshop, vol. 1174 of Lecture Notes in Computer Science. Springer, 1996. 347-350.
PKWARE, Inc. APPNOTE.TXT - .ZIP File Format Specification. Version 6.3.2. January 28,
2007. http://www.pkware.com/documents/casestudies/APPNOTE.txt.
Princeton University. WordNet Search.
http://wordnetweb.princeton.edu/perl/webwn?s=information%20theory (accessed
May 4, 2010).

58

Provos, N. "Defending Against Statistical Steganalysis." 10th USENIX Security
Symposium, 2001.
Provos, N., and P. Honeyman. "Detecting Steganographic Content on the Internet." CITI
Technical Report 01-11, 2001.
Simmons, G. J. "The prisoners' problem and the subliminal channel." CRYPTO'83. Plenum
Press, 1984. 51-67.
Trithemius, Johannes. Steganographia: Hoc est: Ars per occultam, etc. 1621.
http://www.esotericarchives.com/tritheim/stegano.htm (accessed March 4, 2010).
Unknown. Image Steganography and Steganalysis. 2007.
http://www.ims.nus.edu.sg/Programs/imgsci/files/memon/sing_stego.pdf (accessed
March 4, 2010).
USA Today. Terror groups hide behind Web encryption. February 5, 2001.
http://www.usatoday.com/tech/news/2001-02-05-binladen.htm (accessed May 8,
2010).
Westfeld, A., and A. Pfitzmann. "High Capacity Despite Better Steganalysis (F5-A
Steganographic Algorithm)." Lecture Notes in Computer Science (Springer-Verlag) 1768
(2001): 61-75.
Wikipedia contributors. Chosen-plaintext attack. Wikipedia, The Free Encyclopedia.
February 10, 2010. http://en.wikipedia.org/w/index.php?title=Chosen-plaintext_attack
(accessed April 18, 2010).
—. Information theory. May 10, 2010.
http://en.wikipedia.org/w/index.php?title=Information_theory (accessed May 13,
2010).
—. RSA. April 8, 2010. http://en.wikipedia.org/w/index.php?title=RSA (accessed April
23, 2010).
Zöllner, J., et al. "Modeling the security of steganographic systems." Edited by D.
Aucsmith. Information Hiding, 2nd International Workshop. Spring, 1998. 344-354.

59

APPENDIX

Appendix A – RSA Public Key Cryptography

RSA is an algorithm for public key cryptography, invented by cryptographers Rivest,

Shamir, and Adleman. It works as follows (quoted directly from (Wikipedia contributors

2010)):

Key Generation

RSA involves a public key and a private key. The public key can be known to everyone
and is used for encrypting messages. Messages encrypted with the public key can only
be decrypted using the private key. The keys for the RSA algorithm are generated in the
following way:

1. Choose two distinct prime numbers p and q.
o For security purposes, the integers p and q should be chosen uniformly at

random and should be of similar bit-length. Prime integers can be
efficiently found using a primality test.

2. Compute n = pq.
o n is used as the modulus for both the public and private keys

3. Compute φ(pq) = (p − 1)(q − 1). (φ is Euler's totient function).
4. Choose an integer e such that 1 < e < φ(pq), and e and φ(pq) share no divisors

other than 1 (i.e., e and φ(pq) are coprime).
o e is released as the public key exponent.
o e having a short bit-length and small Hamming weight results in more

efficient encryption. However, small values of e (such as e = 3) have been
shown to be less secure in some settings.

5. Determine d (using modular arithmetic) which satisfies the congruence relation
.

o Stated differently, ed − 1 can be evenly divided by the totient
(p − 1)(q − 1).

o This is often computed using the extended Euclidean algorithm.
o d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The
private key consists of the private (or decryption) exponent d which must be kept
secret.

Encryption

60

Alice transmits her public key (n,e) to Bob and keeps the private key secret. Bob then
wishes to send message M to Alice.

He first turns M into an integer 0 < m < n by using an agreed-upon reversible protocol
known as a padding scheme. He then computes the ciphertext c corresponding to:

This can be done quickly using the method of exponentiation by squaring. Bob then
transmits c to Alice.

Decryption

Alice can recover m from c by using her private key exponent d by the following
computation:

Given m, she can recover the original message M by reversing the padding scheme.

(In practice, there are more efficient methods of calculating cd using the pre computed
values above.)

61

Appendix B – Brute Force Attack Output For CommonSteg’s Random
Walk Algorithm

The following is a trimmed output of CommonSteg’s brute force attack against the
image described in 3.4. While the attack logged all messages containing only valid ASCII
characters for stego-keys between the range of 0 and 100,000,000, for brevity the
following results only show the corresponding messages for stego-keys < 100,000.

234875 Messages With Valid ASCII Codes Were Found in 1752 Seconds
Seed Range: 0 to 100000000
--

Seed: 197 Message: v
Seed: 1167 Message: e
Seed: 1187 Message: *
Seed: 1813 Message: >
Seed: 1972 Message: S
Seed: 2223 Message: w
Seed: 2253 Message: ?|
Seed: 3154 Message: %
Seed: 3262 Message:)w$
Seed: 3806 Message: qiteC
Seed: 4133 Message: H
Seed: 4446 Message: S
Seed: 4615 Message: z
Seed: 4676 Message: C~
Seed: 5395 Message: I.FlG
Seed: 5690 Message: ;7
Seed: 5720 Message: =
Seed: 5940 Message: guTt'
Seed: 7386 Message: v>
Seed: 8360 Message: S
Seed: 8460 Message: D
Seed: 8589 Message: u
Seed: 8651 Message: 1
Seed: 9402 Message: NH
Seed: 9585 Message: b
Seed: 11050 Message: C?
Seed: 11931 Message: `
Seed: 12435 Message:
Seed: 13128 Message: .
Seed: 13509 Message: 7
Seed: 13663 Message: \>
Seed: 13923 Message: i
Seed: 14214 Message: @
Seed: 14939 Message: R
Seed: 15782 Message: l
Seed: 16365 Message: q52
Seed: 16823 Message: _j
Seed: 17207 Message: =`
Seed: 17350 Message: &

62

Seed: 17529 Message: #
Seed: 17547 Message: d
Seed: 17556 Message: 6
Seed: 18410 Message: `
Seed: 18618 Message: T
Seed: 19301 Message: im
Seed: 19573 Message: C
Seed: 19698 Message: D$
Seed: 20325 Message: U
Seed: 20911 Message: '
Seed: 21032 Message: F*
Seed: 21181 Message: /.N
Seed: 21627 Message: T
Seed: 21879 Message: /
Seed: 21943 Message: s
Seed: 22010 Message: {
Seed: 22131 Message: *B
Seed: 22270 Message: $
Seed: 22561 Message: L
Seed: 23054 Message: M
Seed: 23552 Message: (
Seed: 23674 Message: [v
Seed: 23830 Message: d
Seed: 24917 Message: >
Seed: 25605 Message: S
Seed: 25774 Message:)
Seed: 26160 Message: {%
Seed: 26814 Message: 0~
Seed: 27257 Message: _
Seed: 27520 Message: C#
Seed: 27577 Message: B
Seed: 27975 Message: I
Seed: 27981 Message: ,
Seed: 28814 Message: S
Seed: 28869 Message: b
Seed: 29141 Message: gB
Seed: 30794 Message: "
Seed: 30973 Message: {6
Seed: 31096 Message: X
Seed: 31303 Message: z
Seed: 31565 Message: o
Seed: 32039 Message: IP
Seed: 32522 Message: p
Seed: 33142 Message: h
Seed: 33171 Message: Q
Seed: 33474 Message: 7y
Seed: 33946 Message: ;
Seed: 34081 Message: 1
Seed: 34138 Message: WG
Seed: 34217 Message: C
Seed: 34331 Message: 8
Seed: 34418 Message: nLB&U
Seed: 35556 Message: f

63

Seed: 36052 Message: |
Seed: 36096 Message: [
Seed: 36490 Message: j
Seed: 36492 Message: 0"
Seed: 36817 Message: y
Seed: 36958 Message: a
Seed: 37027 Message: R
Seed: 37199 Message: AW
Seed: 37237 Message: b
Seed: 37359 Message: >
Seed: 38135 Message: [jo
Seed: 38380 Message: B
Seed: 38714 Message: V
Seed: 38908 Message: .}
Seed: 39264 Message: Z
Seed: 39925 Message: }
Seed: 39946 Message: EkY
Seed: 40252 Message: >O
Seed: 40624 Message: c
Seed: 41795 Message: B
Seed: 41803 Message: @
Seed: 41930 Message: .
Seed: 43175 Message: >\
Seed: 43974 Message: S]2
Seed: 44492 Message: G
Seed: 44654 Message: p
Seed: 44749 Message: Ze
Seed: 44771 Message: J
Seed: 45751 Message: v
Seed: 45925 Message: v
Seed: 46055 Message: ^
Seed: 46056 Message: @
Seed: 46367 Message: ac
Seed: 46714 Message: 9
Seed: 46840 Message: QV
Seed: 47653 Message: U
Seed: 47738 Message: _
Seed: 47983 Message: }
Seed: 48229 Message: VG
Seed: 48300 Message: $
Seed: 48989 Message: }7B
Seed: 49005 Message: *
Seed: 49244 Message: g
Seed: 49562 Message: y
Seed: 50052 Message: &`
Seed: 50300 Message: 7
Seed: 51660 Message: '
Seed: 51983 Message: J
Seed: 52154 Message: m
Seed: 52418 Message: A
Seed: 52776 Message: t
Seed: 53007 Message: R
Seed: 53107 Message: <

64

Seed: 53168 Message: D
Seed: 53295 Message: +}
Seed: 55407 Message: aD
Seed: 55700 Message: G
Seed: 55978 Message: f
Seed: 56447 Message: S
Seed: 56647 Message: CE
Seed: 56936 Message: ?
Seed: 57135 Message:]
Seed: 57234 Message: 7}?
Seed: 57474 Message: B
Seed: 58045 Message: H
Seed: 58174 Message: T
Seed: 58785 Message: =
Seed: 58870 Message: '
Seed: 58877 Message: 0
Seed: 59351 Message: ,
Seed: 59594 Message: W@v
Seed: 60320 Message: 9E
Seed: 60381 Message: B&
Seed: 61188 Message: w.6~
Seed: 61776 Message: 7
Seed: 62136 Message: P[
Seed: 62156 Message: $_
Seed: 62194 Message: S
Seed: 62790 Message: =
Seed: 63757 Message: !
Seed: 65252 Message: xN
Seed: 65410 Message: j
Seed: 65583 Message: #
Seed: 65641 Message: O<
Seed: 66596 Message: I
Seed: 67754 Message: C2
Seed: 67816 Message: B)
Seed: 67817 Message: B
Seed: 68293 Message: G
Seed: 68443 Message: Ss
Seed: 68540 Message: }F
Seed: 69189 Message: k
Seed: 69460 Message: na
Seed: 69714 Message: l
Seed: 70103 Message: -
Seed: 70428 Message: p}I
Seed: 70709 Message: IcmvU
Seed: 71355 Message:
Seed: 71879 Message: r
Seed: 73142 Message: b
Seed: 73143 Message: 8
Seed: 73168 Message: }
Seed: 73505 Message: I
Seed: 74250 Message: S
Seed: 75541 Message: ^
Seed: 75675 Message: Q

65

Seed: 76285 Message: I
Seed: 77395 Message: ;
Seed: 77841 Message: R
Seed: 78168 Message: _
Seed: 78213 Message: 1F;
Seed: 78368 Message: {
Seed: 78602 Message: u
Seed: 79449 Message: D
Seed: 79658 Message:]
Seed: 80039 Message: \
Seed: 80962 Message: z6
Seed: 81298 Message: (Z
Seed: 81766 Message: E
Seed: 82204 Message: >;u
Seed: 82590 Message: `y
Seed: 82954 Message:)
Seed: 83736 Message: N
Seed: 83835 Message: >
Seed: 84021 Message: ,
Seed: 84327 Message: 2)%
Seed: 84957 Message: [v
Seed: 85807 Message: F
Seed: 85990 Message: vfW
Seed: 86526 Message: h
Seed: 86652 Message: L
Seed: 87319 Message: O
Seed: 87509 Message: /
Seed: 87702 Message: qQ
Seed: 88271 Message: E
Seed: 88835 Message: h
Seed: 90002 Message: =
Seed: 90127 Message: :T
Seed: 90768 Message: *
Seed: 91411 Message: <c
Seed: 91481 Message: ^A
Seed: 92078 Message: '
Seed: 92211 Message: d
Seed: 92252 Message: H"
Seed: 92443 Message: +&(
Seed: 92526 Message: O
Seed: 93688 Message: _
Seed: 93991 Message: 5
Seed: 94610 Message: iJ
Seed: 95664 Message: !
Seed: 95727 Message: H
Seed: 95876 Message: =
Seed: 95962 Message: -
Seed: 95991 Message: m
Seed: 96018 Message: c;
Seed: 96632 Message: =d
Seed: 96910 Message: ,
Seed: 97157 Message: d
Seed: 97327 Message: >

66

Seed: 97525 Message: B
Seed: 97774 Message: 6|
Seed: 98034 Message: 9
Seed: 98151 Message: Q,v
Seed: 98170 Message: Z
Seed: 98709 Message: /Sa
Seed: 98861 Message: :
Seed: 99092 Message: S
Seed: 99299 Message: Nr
Seed: 99426 Message: !4
Seed: 99666 Message: 1

67

Appendix C – CommonSteg User’s Manual

File Menu

Upon starting CommonSteg, you are presented with a blank image plane.

An image must be opened before any other functionality may take place. Open an
image by using the File -> Open dialog. Once opened, the program window’s size is
automatically adjusted to accommodate the size of the image.

Now that a picture is opened, the Steg and Unsteg menu items become available. Also,
the Save As functionality becomes enabled. By using the File -> Save As dialog, the
image currently in the display window may be saved as a new file.

68

Steg Menu

The Steg menu provides three options:

Embed Image via LSB:

This option allows the user to embed an image into the currently opened image using
the algorithm as described in section 5.2. Upon choosing the option, a dialog prompting
the user to open a second image is displayed. The selected image must have the exact
same pixel dimensions as the original or an error is displayed. If there was no error, the
chosen image is embedded and a Save As dialog is displayed, prompting for a location to
save the new stego-image. Note that the newly generated stego-image is not
automatically loaded into the window. It must be reopened using the File -> Open
dialog.

Embed Text via LSB:

This option embeds ASCII text into the least significant bits of the image’s pixels, starting
from the most upper-left pixel, as described in section 5.3. Upon selection, the user is
prompted with an input box for the text to be embedded into the image. Subsequently,
a Save As dialog is displayed, prompting for a location to save the new stego-image.

Embed Text via LSB w/ Random Walk:

This option embeds ASCII text into a pseudo-random selection of the image’s pixels as
described in section 5.4. Upon selection, the user is prompted with input boxes for the
text to be embedded into the image and a stego-key. The stego-key must be a positive

69

32-bit signed integer. Subsequently, a Save As dialog is displayed, prompting for a
location to save the new stego-image.

UnSteg Menu

Bit Filter

The Bit Filter is used to recover an image message that was embedded using the Embed
Image via LSB functionality. The least significant bits of the color intensity values for
each pixel are shifted to the left, making them the most significant.

Retrieve Text From LSB

Retrieves text from the image that was embedded using the Embed Text via LSB
functionality. It continues reading until it finds eight consecutive 1’s in the LSBs. If the
end of the image is reached before this occurs, an error is returned. Otherwise, the
recovered message is displayed to the user.

Retrieve Text From LSB w/ Random Walk

Retrieves text from the image that was embedded using the Embed Text via LSB w/
Random Walk functionality. The user is prompted for the stego-key needed to
determine the correct pixels from which to read the message. It continues reading until
it finds eight consecutive 1’s in the LSBs, then outputs the recovered message to the
user.

Brute Force Random Walk

70

Generates a log of all ASCII messages embedded within the file for a user-inputted range
of stego-keys. This takes a very long time for larger ranges of stego-keys.

71

Appendix D – CommonSteg Source Code

MainForm Class

/*

 * CommonSteg v2.1 by Craig Miles

 * Purpose: Implements several common steganographic techniques.

 * MainForm Class - Event handlers for Form actions.

 * Last Modified: May 23, 2010

 * */

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Collections;

namespace CommonSteg

{

 public partial class MainForm : Form

 {

 Bitmap bmp;

 /**

 * MainForm() - Initializes the window.

 * Arguments: NA

 * Returns: NA

 **/

 public MainForm()

 {

 InitializeComponent();

 }

 /***

 * openToolStripMenuItem_Click() - File -> Open event handler.

 * Displays dialog to open an image file. Displays image in pane.

 * Arguments: NA

 * Returns: NA

 **/

 private void openToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // Displays an OpenFileDialog so the user can select a Cursor.

 OpenFileDialog openFileDialog1 = new OpenFileDialog();

 openFileDialog1.Filter = "Image Files|*.png;*.tif;*.gif;*.jpg";

 openFileDialog1.Title = "Select a Lossless Image File";

 // Show the Dialog.

 if (openFileDialog1.ShowDialog() == DialogResult.OK)

 {

 // Assign the cursor in the Stream to the Form's Cursor property.

 bmp = new Bitmap(openFileDialog1.OpenFile());

 pictureBox1.Width = bmp.Width;

 pictureBox1.Height = bmp.Height;

 pictureBox1.Image = bmp;

 stegToolStripMenuItem.Enabled = true;

 unStegToolStripMenuItem.Enabled = true;

 SaveAsMenuItem1.Enabled = true;

 }

 }

72

 /**

 * SaveAsMenuItem1_Click() - File -> Save As event handler.

 * Provides dialog to save current image in pane to disk.

 * Arguments: NA

 * Returns: NA

 **/

 private void SaveAsMenuItem1_Click(object sender, EventArgs e)

 {

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "PNG Image|*.png";

 saveFileDialog1.Title = "Save an Image File";

 saveFileDialog1.ShowDialog();

 if (saveFileDialog1.FileName != "")

 {

 System.IO.FileStream fs =

(System.IO.FileStream)saveFileDialog1.OpenFile();

 bmp.Save(fs, System.Drawing.Imaging.ImageFormat.Png);

 }

 }

 /**

 * exitToolStripMenuItem_Click() - File -> Exit event handler.

 * Terminates execution.

 * Arguments: NA

 * Returns: NA

 **/

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)

 {

 Application.Exit();

 }

 /**

 * embedViaLSBToolStripMenuItem_Click() - Steg -> Embed Image via LSB event

handler.

 * Only active after an image has been opened. Prompts for the image to embed

and calls

 * ImageSteg::EmbedImageIntoLSB

 * Arguments: NA

 * Returns: NA

 **/

 private void embedViaLSBToolStripMenuItem_Click(object sender, EventArgs e)

 {

 // Displays an OpenFileDialog so the user can select a Cursor.

 OpenFileDialog openFileDialog1 = new OpenFileDialog();

 openFileDialog1.Filter = "Image Files|*.png;*.tif;*.gif;*.jpg";

 openFileDialog1.Title = "Select a Lossless Image File To Embed";

 // Show the Dialog.

 if (openFileDialog1.ShowDialog() == DialogResult.OK)

 {

 // Assign the cursor in the Stream to the Form's Cursor property.

 Bitmap ToEmbed = new Bitmap(openFileDialog1.OpenFile());

 ImageSteg Stego = new ImageSteg();

 Bitmap output = Stego.EmbedImageIntoLSB(bmp, ToEmbed);

 if (output != null)

 {

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "PNG Image|*.png";

 saveFileDialog1.Title = "Save an Image File";

 saveFileDialog1.ShowDialog();

 if (saveFileDialog1.FileName != "")

 {

 System.IO.FileStream fs =

(System.IO.FileStream)saveFileDialog1.OpenFile();

 output.Save(fs, System.Drawing.Imaging.ImageFormat.Png);

 }

73

 }

 else

 {

 MessageBox.Show("Error: The image you wish to embed must have the

same pixel dimensions as the cover image.");

 }

 }

 }

 /**

 * embedTextViaLSBToolStripMenuItem_Click_1() - Steg -> Embed Text via LSB event

handler.

 * Only active after an image has been opened. Prompts for the text to embed

and calls

 * ImageSteg::EmbedTextIntoLSB

 * Arguments: NA

 * Returns: NA

 **/

 private void embedTextViaLSBToolStripMenuItem_Click_1(object sender, EventArgs e)

 {

 String Message = InputBox.Show("Input the text to embed into the cover image:

", "Textual Input");

 ImageSteg Stego = new ImageSteg();

 Bitmap output = Stego.EmbedTextIntoLSB(bmp, Message);

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "PNG Image|*.png";

 saveFileDialog1.Title = "Save an Image File";

 saveFileDialog1.ShowDialog();

 if (saveFileDialog1.FileName != "")

 {

 System.IO.FileStream fs =

(System.IO.FileStream)saveFileDialog1.OpenFile();

 output.Save(fs, System.Drawing.Imaging.ImageFormat.Png);

 }

 }

 /**

 * embedTextViaLSBWRandomWalkToolStripMenuItem_Click - Steg -> Embed Text via

LSB Random Walk event handler.

 * Only active after an image has been opened. Prompts for the text to embed

and seed (Int32), then calls

 * ImageSteg::EmbedTextIntoLSBRandomWalk

 * Arguments: NA

 * Returns: NA

 **/

 private void embedTextViaLSBWRandomWalkToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 String Message = InputBox.Show("Input the text to embed into the cover image:

", "Textual Input");

 String seedStr = InputBox.Show("Input seed (any valid signed 32-bit

integer).", "Seed Input");

 Int32 seed = System.Convert.ToInt32(seedStr);

 ImageSteg Stego = new ImageSteg();

 Bitmap output = Stego.EmbedTextIntoLSBRandomWalk(bmp, Message, seed);

 if (output != null)

 {

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "PNG Image|*.png";

 saveFileDialog1.Title = "Save an Image File";

 saveFileDialog1.ShowDialog();

 if (saveFileDialog1.FileName != "")

 {

 System.IO.FileStream fs =

(System.IO.FileStream)saveFileDialog1.OpenFile();

 output.Save(fs, System.Drawing.Imaging.ImageFormat.Png);

 }

 }

 else

 {

74

 MessageBox.Show("Image does not have enough pixels to hold the specified

message.");

 }

 }

 /**

 * bitFilterToolStripMenuItem_Click() - UnSteg -> Bit Filter event handler.

 * Calls ImageSteg::FilterLSB, updates image in pane with result.

 * Arguments: NA

 * Returns: NA

 **/

 private void bitFilterToolStripMenuItem_Click(object sender, EventArgs e)

 {

 ImageSteg Stego = new ImageSteg();

 pictureBox1.Image = Stego.FilterLSB(bmp, true);

 }

 /**

 * retrToolStripMenuItem_Click() - UnSteg -> Retrieve Text from LSB event

handler.

 * Calls ImageSteg::RetrieveTextFromLSB, outputs to user

 * Arguments: NA

 * Returns: NA

 **/

 private void retrToolStripMenuItem_Click(object sender, EventArgs e)

 {

 ImageSteg Stego = new ImageSteg();

 String output = Stego.RetrieveTextFromLSB(bmp);

 MessageBox.Show(output);

 }

 /**

 * retrieveTextFromLSBWRandomWalkToolStripMenuItem_Click() - UnSteg -> Retrieve

Text from LSB Random Walk event handler.

 * Prompts for seed, calls ImageSteg::RetrieveTextFromLSBRandomWalk, outputs

result to user

 * Arguments: NA

 * Returns: NA

 **/

 private void retrieveTextFromLSBWRandomWalkToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 ImageSteg Stego = new ImageSteg();

 String seedStr = InputBox.Show("Input seed (any valid signed 32-bit

integer).", "Seed Input");

 Int32 seed = System.Convert.ToInt32(seedStr);

 String output = Stego.RetrieveTextFromLSBRandomWalk(bmp, seed, true);

 MessageBox.Show(output);

 }

 /**

 * bruteForceRandomWalkToolStripMenuItem_Click() - UnSteg -> Brute Force Random

Walk event handler.

 * Calls ImageSteg::RetrieveTextFromLSBRandomWalk for a specified range of

seeds, and logs all valid textual messages.

 * Arguments: NA

 * Returns: NA

 **/

 private void bruteForceRandomWalkToolStripMenuItem_Click(object sender, EventArgs

e)

 {

 Int32 low = 0;

 Int32 high = 100000000;

 ImageSteg Stego = new ImageSteg();

 System.Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch();

 watch.Start();

75

 ArrayList output = Stego.BruteForceRandomWalk(bmp, low, high); //2147483647

 watch.Stop();

 String text = output.Count.ToString() + " Messages With Valid

ASCII Codes Were Found in " +

 (watch.ElapsedMilliseconds /

1000).ToString() + " Seconds\r\n" +

 "Seed Range: " + low.ToString() + " to " +

high.ToString() + "\r\n" +

 "---

-------\r\n";

 foreach (String s in output)

 {

 text = text + "\r\n" + s;

 }

 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "TXT File|*.txt";

 saveFileDialog1.Title = "Save the log file";

 saveFileDialog1.ShowDialog();

 if (saveFileDialog1.FileName != "")

 {

 System.IO.Stream fs = (System.IO.Stream)saveFileDialog1.OpenFile();

 System.IO.StreamWriter sw = new System.IO.StreamWriter(fs);

 sw.WriteLine(text);

 sw.Close();

 fs.Close();

 }

 }

 }

}

ImageSteg Class

/*

 * CommonSteg v2.1 by Craig Miles

 * Purpose: Implements several common steganographic techniques.

 * ImageSteg Class - Implements steganographic algorithms.

 * Last Modified: May 23, 2010

 * */

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Drawing;

using System.Windows.Forms;

using System.Collections;

namespace CommonSteg

{

 class ImageSteg

 {

 Color embColor = new Color();

 Color oldColor = new Color();

 byte newR, newG, newB;

 /**

 * EmbedImageIntoLSB()

 * Embeds an image into LSBs of color pixels where pixel selection is sequential

 * Arguments: Bitmap cover - image to hide text in

 * Bitmap message - the image to hide

 * Returns: Bitmap - Stego-Image containing message

 **/

 public Bitmap EmbedImageIntoLSB(Bitmap cover, Bitmap message)

 {

 Bitmap bmp = cover;

 Bitmap ToEmbed = message;

 if (ToEmbed.Height != bmp.Height || ToEmbed.Width != bmp.Width)

76

 {

 return null;

 }

 else

 {

 for (int ii = 0; ii <= bmp.Width - 1; ii++)

 {

 for (int jj = 0; jj <= bmp.Height - 1; jj++)

 {

 embColor = ToEmbed.GetPixel(ii, jj);

 oldColor = bmp.GetPixel(ii, jj);

 // RED

 if (embColor.R >= 192)

 {

 newR = SetLSBHigh(oldColor.R);

 }

 else if (embColor.R >= 128)

 {

 newR = SetLSBMid(oldColor.R);

 }

 else if (embColor.R >= 64)

 {

 newR = SetLSBLow(oldColor.R);

 }

 else

 {

 newR = SetLSBZero(oldColor.R);

 }

 // GREEN

 if (embColor.G >= 192)

 {

 newG = SetLSBHigh(oldColor.G);

 }

 else if (embColor.G >= 128)

 {

 newG = SetLSBMid(oldColor.G);

 }

 else if (embColor.G >= 64)

 {

 newG = SetLSBLow(oldColor.G);

 }

 else

 {

 newG = SetLSBZero(oldColor.G);

 }

 // BLUE

 if (embColor.B >= 192)

 {

 newB = SetLSBHigh(oldColor.B);

 }

 else if (embColor.B >= 128)

 {

 newB = SetLSBMid(oldColor.B);

 }

 else if (embColor.B >= 64)

 {

 newB = SetLSBLow(oldColor.B);

 }

 else

 {

 newB = SetLSBZero(oldColor.B);

 }

 Color newColor = System.Drawing.Color.FromArgb(newR, newG, newB);

 bmp.SetPixel(ii, jj, newColor);

 }

 }

 return bmp;

77

 }

 }

 /**

 * EmbedTextIntoLSB()

 * Embeds text into LSBs of color pixels where pixel selection is sequential

 * Arguments: Bitmap cover - image to hide text in

 * String message - the message to hide

 * Returns: Bitmap - Stego-Image containing message

 **/

 public Bitmap EmbedTextIntoLSB(Bitmap cover, String message)

 {

 Bitmap bmp = cover;

 String ToEmbed = message;

 int x = 0;

 int y = 0;

 Color newColor;

 foreach (char c in ToEmbed)

 {

 for (int mask = 128; mask >= 1; mask = mask / 2)

 {

 oldColor = cover.GetPixel(x, y);

 if (((byte)c & mask) == mask)

 {

 newR = SetLSB1(oldColor.R);

 }

 else

 {

 newR = SetLSB0(oldColor.R);

 }

 //MessageBox.Show(newR.ToString());

 newColor = System.Drawing.Color.FromArgb(newR, oldColor.G,

oldColor.B);

 bmp.SetPixel(x, y, newColor);

 if (x < bmp.Width - 1)

 {

 x++;

 }

 else

 {

 x = 0;

 y++;

 }

 }

 }

 for (int ii = 1; ii <= 8; ii++)

 {

 oldColor = cover.GetPixel(x, y);

 newR = SetLSB1(oldColor.R);

 //MessageBox.Show(newR.ToString());

 newColor = System.Drawing.Color.FromArgb(newR, oldColor.G, oldColor.B);

 bmp.SetPixel(x, y, newColor);

 if (x < bmp.Width - 1)

 {

 x++;

 }

 else

 {

 x = 0;

 y++;

 }

 }

 return bmp;

 }

 /**

 * EmbedTextIntoLSBRandomWalk()

 * Embeds text into LSBs of color pixels where pixel selection is handled via

PRNG

 * Arguments: Bitmap cover - image to hide text in

 * String message - the message to hide

78

 * Int32 seed - Seed for PRNG

 * Returns: Bitmap - Stego-Image containing message

 **/

 public Bitmap EmbedTextIntoLSBRandomWalk(Bitmap cover, String message, Int32

seed)

 {

 Bitmap bmp = cover;

 String ToEmbed = message;

 int x = 0;

 int y = 0;

 int curPixel;

 int totalPixels = bmp.Width * bmp.Height;

 if (totalPixels < ((message.Length * 8) + 8))

 {

 return null;

 }

 Color newColor;

 Random rnd = new Random(seed);

 curPixel = rnd.Next(0, totalPixels - 1);

 x = curPixel % bmp.Width;

 y = curPixel / bmp.Width;

 foreach (char c in ToEmbed)

 {

 for (int mask = 128; mask >= 1; mask = mask / 2)

 {

 oldColor = cover.GetPixel(x, y);

 if (((byte)c & mask) == mask)

 {

 newR = SetLSB1(oldColor.R);

 }

 else

 {

 newR = SetLSB0(oldColor.R);

 }

 //MessageBox.Show(newR.ToString());

 newColor = System.Drawing.Color.FromArgb(newR, oldColor.G,

oldColor.B);

 bmp.SetPixel(x, y, newColor);

 curPixel = rnd.Next(0, totalPixels - 1);

 x = curPixel % bmp.Width;

 y = curPixel / bmp.Width;

 }

 }

 for (int ii = 1; ii <= 8; ii++)

 {

 oldColor = cover.GetPixel(x, y);

 newR = SetLSB1(oldColor.R);

 //MessageBox.Show(newR.ToString());

 newColor = System.Drawing.Color.FromArgb(newR, oldColor.G, oldColor.B);

 bmp.SetPixel(x, y, newColor);

 curPixel = rnd.Next(0, totalPixels - 1);

 x = curPixel % bmp.Width;

 y = curPixel / bmp.Width;

 }

 return bmp;

 }

 /**

 * FilterLSB()

 * Sets all but the 2 LSBs for all pixel RGBs to 0. Shifts them to MSBs if

 * amplify is set.

 * Arguments: Bitmap stego - image to filter

 * Boolean amplify - Amplify LSBs?

 * Returns: Bitmap - Filtered image.

 **/

 public Bitmap FilterLSB(Bitmap stego, Boolean amplify)

 {

 Bitmap bmp = stego;

 Color newColor = new Color();

79

 for (int ii = 0; ii <= bmp.Width - 1; ii++)

 {

 for (int jj = 0; jj <= bmp.Height - 1; jj++)

 {

 oldColor = bmp.GetPixel(ii, jj);

 if (amplify)

 {

 newColor = System.Drawing.Color.FromArgb((oldColor.R & 3) << 6,

(oldColor.G & 3) << 6, (oldColor.B & 3) << 6);

 }

 else

 {

 newColor = System.Drawing.Color.FromArgb(oldColor.R & 3,

oldColor.G & 3, oldColor.B & 3);

 }

 bmp.SetPixel(ii, jj, newColor);

 }

 }

 return bmp;

 }

 /**

 * RetrieveTextFromLSB()

 * Retrieves a message from an image via sequential starting pixels.

 * Arguments: Bitmap stego - image to extract text from

 * Returns: String - Recovered message

 **/

 public String RetrieveTextFromLSB(Bitmap stego)

 {

 byte c = 0;

 StringBuilder builder = new StringBuilder();

 String output = "";

 int x = 0;

 int y = 0;

 Color pixelColor;

 while (c != 255)

 {

 c = 0;

 for (int ii = 7; ii >= 0; ii--)

 {

 pixelColor = stego.GetPixel(x, y);

 if (pixelColor.R % 2 != 0)

 {

 c += (byte)Math.Pow(2, ii);

 }

 if (x < stego.Width - 1)

 {

 x++;

 }

 else

 {

 x = 0;

 y++;

 }

 }

 if (c != 255)

 {

 builder.Append((char)c);

 }

 }

 output = builder.ToString();

 return output;

 }

 /**

 * RetrieveTextFromLSBRandomWalk()

 * Retrieves a message from an image via Random Walk algorithm. If

WorkWithGarbage

80

 * set, will return non-valid ASCII strings.

 * Arguments: Bitmap stego - image to extract text from

 * Int32 seed - Seed for PRNG

 * Boolean WorkWithGarbage - Validate output?

 * Returns: String - Detected message

 **/

 public String RetrieveTextFromLSBRandomWalk(Bitmap stego, Int32 seed, Boolean

WorkWithGarbage)

 {

 byte c = 0;

 StringBuilder builder = new StringBuilder();

 String output = "";

 int x = 0;

 int y = 0;

 Color pixelColor;

 int curPixel;

 int totalPixels = stego.Width * stego.Height;

 Random rnd = new Random(seed);

 curPixel = rnd.Next(0, totalPixels - 1);

 x = curPixel % stego.Width;

 y = curPixel / stego.Width;

 while (c != 255)

 {

 c = 0;

 for (int ii = 7; ii >= 0; ii--)

 {

 pixelColor = stego.GetPixel(x, y);

 if (pixelColor.R % 2 != 0)

 {

 c += (byte)Math.Pow(2, ii);

 }

 curPixel = rnd.Next(0, totalPixels - 1);

 x = curPixel % stego.Width;

 y = curPixel / stego.Width;

 }

 if (!WorkWithGarbage)

 {

 if ((int)c < 32 || ((int)c > 126 && (int)c != 255))

 {

 return null;

 }

 }

 if (c != 255)

 {

 builder.Append((char)c);

 }

 }

 output = builder.ToString();

 return output;

 }

 /**

 * BruteForceRandomWalk()

 * Extracts all ASCII message strings from image in user specified seed range

 * Arguments: Bitmap stego - image to attack

 * Int32 lowSeed - starting seed to BF from

 * Int32 highSeed - max seed to BF to

 * Returns: ArrayList<String> - Log of all found ASCII messages

 **/

 public ArrayList BruteForceRandomWalk(Bitmap stego, Int32 lowSeed, Int32

highSeed)

 {

 String text;

 ArrayList returnedStrings = new ArrayList();

 for(int ii = lowSeed; ii <= highSeed; ii++)

 {

 text = RetrieveTextFromLSBRandomWalk(stego, ii, false);

 if (text != null && text.CompareTo("") != 0)

 {

81

 text = "Seed: " + ii.ToString() + " Message: " + text;

 returnedStrings.Add(text);

 }

 }

 return returnedStrings;

 }

 /**

 * SetLSB1()

 * Sets the least significant bit of a byte to 1.

 * Arguments: byte input - byte to modify

 * Returns: byte - modified byte

 **/

 private byte SetLSB1(byte input)

 {

 byte output = input;

 if ((input & 1) != 1)

 {

 output = (byte)(output ^ 1);

 }

 return output;

 }

 /**

 * SetLSB0()

 * Sets the least significant bit of a byte to 0.

 * Arguments: byte input - byte to modify

 * Returns: byte - modified byte

 **/

 private byte SetLSB0(byte input)

 {

 byte output = input;

 if ((input & 1) == 1)

 {

 output = (byte)(output ^ 1);

 }

 return output;

 }

 /**

 * SetLSBHigh()

 * Sets the 2 least significant bits of a byte to 11.

 * Arguments: byte input - byte to modify

 * Returns: byte - modified byte

 **/

 private byte SetLSBHigh(byte input)

 {

 byte output = input;

 if ((input & 2) != 2)

 {

 output = (byte)(input ^ 2);

 }

 if ((input & 1) != 1)

 {

 output = (byte)(output ^ 1);

 }

 return output;

 }

 /**

 * SetLSBMid()

 * Sets the 2 least significant bits of a byte to 10.

 * Arguments: byte input - byte to modify

 * Returns: byte - modified byte

 **/

 private byte SetLSBMid(byte input)

 {

 byte output = input;

 if ((input & 2) != 2)

 {

82

 output = (byte)(input ^ 2);

 }

 if ((input & 1) == 1)

 {

 output = (byte)(output ^ 1);

 }

 return output;

 }

 /**

 * SetLSBLow()

 * Sets the 2 least significant bits of a byte to 01.

 * Arguments: byte input - byte to modify

 * Returns: byte - modified byte

 **/

 private byte SetLSBLow(byte input)

 {

 byte output = input;

 if ((input & 2) == 2)

 {

 output = (byte)(input ^ 2);

 }

 if ((input & 1) != 1)

 {

 output = (byte)(output ^ 1);

 }

 return output;

 }

 /**

 * SetLSBZero()

 * Sets the 2 least significant bits of a byte to 00.

 * Arguments: byte input - byte to modify

 * Returns: byte - modified byte

 **/

 private byte SetLSBZero(byte input)

 {

 byte output = input;

 if ((input & 2) == 2)

 {

 output = (byte)(input ^ 2);

 }

 if ((input & 1) == 1)

 {

 output = (byte)(output ^ 1);

 }

 return output;

 }

 }

}

